SARS-CoV-2 en aguas residuales y superficiales: ¿cómo lidiar con el problema?
Issue | Vol. 5 Núm. 1 (2021): Ciencia y Salud, enero-abril |
DOI | |
Publicado | feb 23, 2021 |
Estadísticas |
Resumen
Introducción: hoy la humanidad sufre uno de los peores episodios debido a la pandemia causada por el SARS-CoV-2. Su alta infectividad, rápida propagación y persistencia en ciertas superficies dificultan el combate de este virus. Su presencia en aguas residuales y posible transmisión fecal-oral podría ser una nueva amenaza para la salud pública.
Objetivo: alertar a la comunidad científica internacional y a los gobiernos sobre la presencia de SARS-CoV-2 en las aguas residuales y sobre qué hacer para evitar su propagación por este medio.
Métodos: se realizó una revisión de artículos referenciados en SCOPUS y Web of Science desde el año 2019 relacionados con la presencia del virus en aguas residuales y superficiales.
Resultados y discusión: es necesario establecer sistemas de monitoreo, utilizar métodos analíticos sensibles y rápidos para la detección del virus en las aguas residuales y superficiales. Asimismo, implantar protocolos de inactivación del virus en las unidades de salud y en las plantas de tratamiento de aguas. Se recomiendan procesos con oxidantes químicos, radiación ultravioleta, fotocatálisis, foto-Fenton, ozono o filtración por membrana. Además, se debe alertar a la población sobre la importancia del lavado y de la desinfección de productos agrícolas, así como del cuidado en su manejo por parte de los trabajadores agrícolas.
2. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508-13. Available from: https://doi.org/10.1038/nm.3985
3. Lu G, Wang Q, Gao GF. Bat-to-human: Spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468-78. Available from: https://doi.org/10.1016/j.tim.2015.06.003
4. Wang J, Shen J, Ye D, Yan X, Zhang Y, Yang W, et al. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environmental Pollution. 2020. Available from: https://doi.org/10.1016/j.envpol.2020.114665
5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507-13. Available from: https://doi.org/10.1016/S0140-6736(20)30211-7
6. Amirian ES. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Vol. 95, International Journal of Infectious Diseases. 2020. Available from: https://doi: 10.1016/j.ijid.2020.04.057
7. Díez IL, Gamarra VM, García L, Latasa ZP, Monge CS, Parra RL, et al. Informe Técnico. Nuevo coronavirus 2019-nCoV. Ministerio de Sanidad (España). Madrid, España; 2020.
8. El Baz S, Imziln B. Can Aerosols and Wastewater be Considered as Potential Transmissional Sources of COVID-19 to Humans? Eur J Environ Public Heal. 2020;4(2). Available from: https://doi.org/10.29333/ejeph/8324
9. 9. Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 2020. Available from: https://doi.org/10.1038/s41591-020-0912-6
10. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020 May 13. Available from: https://doi.org/10.1056/NEJMc2011400
11. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728(138764). Available from: https://doi.org/10.1016/j.scitotenv. 2020.138764
12. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020; 5:533-4. Available from: https://doi.org/ 10.1016/S2468-1253(20)30087-X
13. Barcelo D. An Environmental and Health Perspective for COVID-19 Outbreak: Meteorology and Air Quality Influence, Sewage Epidemiology Indicator, Hospitals Disinfection, Drug Therapies and Recommendations. J Environ Chem Eng. 2020 May 5;8(4):104006. Available from: https://doi.org/10.1016/j.jece.2020.104006
14. Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J Med Virol. 2020;1-5. Available from: https://doi.org/10.1002/jmv.25936
15. Carducci A, Federigi I, Dasheng L, Julian RT, Marco V. Making waves: Coronavirus detection, presence, and persistence in the water environment: State of the art and knowledge needs for public health. Vol. 179, Water Research. 2020. Available from: https://doi.org/10.1016/j.watres. 2020.115907
16. Murakami M, Hata A, Honda R, Watanabe T. Letter to the Editor: Wastewater-Based Epidemiology Can Overcome Representativeness and Stigma Issues Related to COVID-19. Environ Sci Technol. 2020; 54(9):5311. Available from: https://doi.org/10.1021/acs.est.0c02172
17. Allende PA, de Andrés MA, Figueras HA, Grimalt OJ, de Castro PC, Sánchez MG. Informe sobre transmisión del SARS-CoV-2 en playas y piscinas. 2020.
18. Gormley M, Aspray TJ, Kelly DA. COVID-19: Mitigating transmission via wastewater plumbing systems. Lancet Glob Heal. 2020;8:e643. Available from: https://doi.org/10.1016/S2214-109X(20)30112-1
19. Ghernaout D, Elboughdiri N. Environmental Engineering for Stopping Viruses Pandemics. OALib. 2020;7(e6299). Available from: https://doi.org/10.4236/oalib.1106299
20. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020;580: 176-7. Available from: https://doi.org/10.1038/d41586-020-00973-x
21. Naddeo V, Liu H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond? Environ Sci Water Res Technol. 2020;6(5):1213-6. Available from: http://dx.doi.org/10.1039/D0EW90015J
22. Tamayo IM, de-Oliveira EG, Martínez FNR, Hernández TO, Fimia DR, Iannacone JA. Microbiological, chemical and ecotoxicological quality of waters used for irrigation in the Yabú valley, Santa Clara, Villa Clara, Cuba. Biotempo. 2019;16(1):85-98.
23. Nghiem LD, Morgan B, Donner E, Short MD. The COVID-19 pandemic: Considerations for the waste and wastewater services sector. Case Stud Chem Environ Eng. 2020; 1:100006. Available from: https://doi.org/https://doi.org/10.1016/j.cscee.2020.100006
24. Bofill-Mas S, Hundesa A, Calgua B, Rusiñol M, Maluquer de Motes C, Girones R. Cost-effective method for microbial source tracking using specific human and animal viruses. J Vis Exp. 2011 Dec 3;(58):2820. Available from: https://doi.org/10.3791/2820
25. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks, and bioremediation. New Biotechnol. 2015;32(1):147-56. Available from: https://doi.org/https://doi.org/10.1016/j.nbt.2014.01.001
26. Puig M, Jofre J, Lucena F, Allard A, Wadell G, Girones R. Detection of adenoviruses and enteroviruses in polluted waters by nested PCR amplification. Appl Environ Microbiol. 1994 Aug; 60(8):2963-70. Available from: https://pubmed.ncbi.nlm.nih.gov/8085832
27. Rački N, Morisset D, Gutierrez-Aguirre I, Ravnikar M. One-step RT-droplet digital PCR: A breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem. 2013/11/26. 2014 Jan;406(3):661-7. Available from: https://doi.org/10.1007/s00216-013-7476-y
28. Mao K, Zhang H, Yang Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ Sci Technol. 2020;54:3733-5. Available from: https://doi.org/10.1021/acs.est.0c01174
29. Dong L, Zhou J, Niu C, Wang Q, Pan Y, Sheng S, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. medRxiv. 2020. Available from: https://doi.org/10.1101/2020.03.14.20036129
30. WHO. Operational considerations for COVID-19 management in the accommodation sector [Internet]. Geneva; 2020 [cited 2020 May 18]. Available from: https://apps.who.int/iris/bitstream/handle/10665/331638/WHO-2019-nCoV-Hotels-2020.1-eng.pdf
31. Ottoson J, Hansen A, Björlenius B, Norder H, Stenström TA. Removal of viruses, parasitic protozoa, and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Res. 2006;40(7):1449-57. Available from: https://doi.org/https://doi.org/ 10.1016/j.watres.2006.01.039
32. Sobsey MD. Inactivation of Health-Related Microorganisms in Water by Disinfection Processes. Water Sci Technol. 1989 Mar 1;21(3):179-95. Available from: https://doi.org/10.2166/wst.1989.0098
33. Watts RJ, Kong S, Orr MP, Miller GC, Henry BE. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res. 1995;29(1):95-100. Available from: https://doi.org/https://doi.org/10.1016/0043-1354(94)E0122-M
34. Xu P, Janex M-L, Savoye P, Cockx A, Lazarova V. Wastewater disinfection by ozone: Main parameters for process design. Water Res. 2002;36(4):1043-55. Available from: https://doi.org/https://doi.org/10.1016/S0043-1354(01) 00298-6
35. Steele M, Odumeru J. Irrigation Water as Source of Foodborne Pathogens on Fruit and Vegetables. J Food Prot. 2004 Dec 1;67(12):2839-49. Available from: https://doi.org/10.4315/0362-028X-67.12.2839
- Resumen visto - 739 veces
- PDF descargado - 333 veces
- HTML descargado - 84 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Salud, 2021
Afiliaciones
Yaset Rodríguez Rodríguez
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Elena Regla Rosa Domínguez
Universidad Central “Marta Abreu” de Las Villas (UCLV). Facultad de Química y Farmacia (FQF). Villa Clara, Cuba
Ulises Jauregui-Haza
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Carlos José Boluda
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Luis Enrique Rodríguez de Francisco
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana