Polimorfismos genéticos implicados en el desarrollo de la púrpura trombocitopénica inmune
Issue | Vol. 7 Núm. 1 (2023): Ciencia y Salud, enero-marzo |
DOI | |
Publicado | mar 9, 2023 |
Estadísticas |
Resumen
Introducción: los cambios en el ácido desoxirribonucleico se conocen como mutaciones, estas dan lugar a los polimorfismos, los cuales generan variación alélica entre individuos y diversidad de la misma especie. Se ha sugerido que los polimorfismos genéticos en los mediadores inmunitarios desempeñan un papel fundamental en la patogénesis de muchos trastornos autoinmunes, como en la púrpura trombocitopénica inmune, siendo esta el tipo más común de púrpura trombocitopénica y, a menudo, se diagnostica como un tipo de trastorno autoinmune, debido a la destrucción de las plaquetas mediadas por el sistema inmunitario.
Objetivo: realizar una revisión bibliográfica sobre el papel de los polimorfismos genéticos y su influencia en el desarrollo de la púrpura trombocitopénica inmune.
Métodos: se realizó revisión literaria en inglés y español en PubMed y Elsevier, desde marzo hasta mayo del 2021, con el uso de combinación de palabras clave y términos MeSH, como púrpura trombocitopénica y polimorfismos genéticos. Se realizó análisis y resumen de la literatura encontrada.
Conclusión: la púrpura trombocitopénica inmune es considerada como una patología multifactorial, causada por factores ambientales y genéticos, dentro de los cuales se encuentran los polimorfismos para los mediadores inmunitarios que pueden llevar a una exacerbación de la enfermedad o no intervenir en la misma.
Abdel Ghafar MT, El-Kholy RA, Elbedewy TA, Allam AA, Eissa RAE, Samy SM, et al. Impact of CD40 gene polymorphisms on the risk of immune thrombocytopenic purpura. Gene. 2020;736:144419. doi:10.1016/j.gene.2020.144419
Xu J, Zhao L, Zhang Y, Guo Q, Chen H. CD16 and CD32 Gene Polymorphisms May Contribute to Risk of Idiopathic Thrombocytopenic Purpura. Med Sci Monit. 2016;22:2086-96. doi: 10.12659/ msm.895390
Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev. 2017;16(6):620-32. doi: 10.1016/j.autrev.2017.04.012
Frederiksen H, Schmidt K. The incidence of idiopathic thrombocytopenic purpura in adults increases with age. Blood. 1999;94(3):909-13.
Despotovic JM, Grimes AB. Pediatric ITP: is it different from adult ITP? Hematology Am Soc Hematol Educ Program. 2018;2018(1):405-11. doi: 10.1182/asheducation-2018.1.405
Onisâi M, Vlădăreanu AM, Spînu A, Găman M, Bumbea H. Idiopathic thrombocytopenic purpura (ITP) - new era for an old disease. Rom J Intern Med. 2019;57(4):273-83. doi: 10.2478/ rjim-2019-0014
Zufferey A, Kapur R, Semple JW. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). J Clin Med. 2017;6(2):16. doi: 10.3390/jcm6020016
Cooper N, Ghanima W. Immune Thrombocytopenia. N Engl J Med. 2019;381(10):945-55. doi: 10. 1056/NEJMcp1810479.
Perera M, Garrido T. Advances in the pathophysiology of primary immune thrombocytopenia. Hematology. 2017;22(1):41-53. doi: 10.1080/10245332.2016.1219497
Behzad MM, Asnafi AA, Jalalifar MA, Moghtadaei M, Jaseb K, Saki N. Cellular expression of CD markers in immune thrombocytopenic purpura: implications for prognosis. APMIS. 2018;126(6):523-32. doi: 10.1111/apm.12853
Aref S, El-Ghonemy MS, El-Aziz SA, Abouzeid T, Talaab M, El-Sabbagh A. Impact of serum immunoglobulins level and IL-18 promoter gene polymorphism among Egyptian patients with idiopathic thrombocytopenic purpura. Hematology. 2017;22(2):99-104. doi: 10.1080/10245332.2016.1221213
Yadav DK, Tripathi AK, Kumar A, Agarwal J, Prasad KN, Gupta D, et al. Association of TNF-α -308G>A and TNF-β +252A>G genes polymorphisms with primary immune thrombocytopenia: a North Indian study. Blood Coagul Fibrinolysis. 2016;27(7):791-6. doi: 10.1097/MBC.0000000000000492
Pehlivan M, Okan V, Sever T, Balci SO, Yilmaz M, Babacan T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura. Platelets. 2011;22(8):588-95. doi: 10.3109/09537104.2011.577255
Wu KH, Peng CT, Li TC, Wan L, Tsai CH, Lan SJ, et al. Interleukin 4, interleukin 6 and interleukin 10 polymorphisms in children with acute and chronic immune thrombocytopenic purpura. Br J Haematol. 2005;128(6):849-52. doi: 10.1111/j.1365-2141.2005.05385.x
El Ghannam D, Fawzy IM, Azmy E, Hakim H, Eid I. Relation of interleukin-10 Promoter Polymorphisms to Adult Chronic Immune Thrombocytopenic Purpura in a Cohort of Egyptian Population. Immunol Invest. 2015;44(7):616-26. doi: 10.3109/08820139.2015.1064948
Soliman MA, Helwa MA, Fath-Allah SK, El-Hawy MA, Badr HS, Barseem NF. IL-10 polymorphisms and T-cell subsets could affect the clinical presentation and outcome of childhood immune thrombocytopenia in Egyptian population. APMIS. 2018;126(5):380-8. doi: 10.1111/ apm.12823
LeVine DN, Brooks MB. Immune thrombocytopenia (ITP): Pathophysiology update and diagnostic dilemmas. Vet Clin Pathol. 2019;48(Suppl 1):17-28. doi: 10.1111/vcp.12774
Eyada TK, Farawela HM, Khorshied MM, Shaheen IA, Selim NM, Khalifa IA. FcγRIIa and FcγRIIIa genetic polymorphisms in a group of pediatric immune thrombocytopenic purpura in Egypt. Blood Coagul Fibrinolysis. 2012;23(1):64-8. doi: 10.1097/MBC.0b013e32834ddf2f
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol. 2019;10:2237. doi: 10.3389/fimmu.2019.02237
Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol. 2020;27(6):42329. doi: 10.1097/MOH.0000000000000612
Li G, Gao L, Ma R, Tian W, Mingzhi L. Associations between FCGR polymorphisms and immune thrombocytopenia: A meta-analysis. Scand J Immunol. 2019;89(5):e12758. doi: 10.1111/sji. 12758
Nimmerjahn F, Ravetch JV. Fc gamma receptors: old friends and new family members. Immunity 2006;24:19-28.
Rocha AM, De Souza C, Rocha GA, De Melo FF, Saraiva IS, Clementino NC, et al. IL1RN VNTR and IL2-330 polymorphic genes are independently associated with chronic immune thrombocytopenia. Br J Haematol. 2010;150(6):679-84. doi: 10.1111/j.1365-2141.2010.08318.x
Yesil S, Tanyildiz HG, Tekgunduz SA, Toprak S, Fettah A, Dikmen AU, et al. Vitamin D receptor polymorphisms in immune thrombocytopenic purpura. Pediatr Int. 2017;59(6):682-5. doi: 10. 1111/ped.13273
Rezaeeyan H, Jaseb K, Alghasi A, Asnafi AA, Saki N. Association between gene polymorphisms and clinical features in idiopathic thrombocytopenic purpura patients. Blood Coagul Fibrinolysis. 2017;28(8):617-22. doi: 10.1097/MBC.0000000000000646
Kistangari G, McCrae KR. Immune thrombocytopenia. Hematol Oncol Clin North Am. 2013;27(3):495-520. doi: 10.1016/j.hoc.2013.0 3.001
Page LK, Psaila B, Provan D, Michael Hamilton J, Jenkins JM, Elish AS, et al. The immune thrombocytopenic purpura (ITP) bleeding score: assessment of bleeding in patients with ITP. Br J Haematol. 2007;138(2):245-8. doi: 10.1111/j.13652141.2007.06635.x
Neunert C, Terrell DR, Arnold DM, Buchanan G, Cines DB, Cooper N, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019;3(23):3829-66. doi: 10.1182/bloodadvances.2019000966
Piel-Julian ML, Mahévas M, Germain J, Languille L, Comont T, Lapeyre-Mestre M, et al. CARMEN investigators group. Risk factors for bleeding, including platelet count threshold, in newly diagnosed immune thrombocytopenia adults. J Thromb Haemost. 2018;16(9):1830-42. doi: 10.1111/jth. 14227
Newton JL, Reese JA, Watson SI, Vesely SK, Bolton-Maggs PH, George JN, et al. Fatigue in adult patients with primary immune thrombocytopenia. Eur J Haematol. 2011;86(5):420-9. doi: 10.1111/j.1600-0609.2011.01587.x.
Ruggeri M, Tosetto A, Palandri F, Polverelli N, Mazzucconi MG, Santoro C, et al; Gruppo Italiano Malattie EMatologiche dell’Adulto (GIMEMA) Anemia and Thrombocytopenias Working Party. GIMEMA Study ITP0311. Thrombotic risk in patients with primary immune thrombocytopenia is only mildly increased and explained by personal and treatment-related risk factors. J Thromb Haemost. 2014;12(8):1266-73. doi: 10.1111/jth.12636
Fierro A. Púrpuras. Trombocitopenia inmune primaria. Pediatr Integral 2012; XVI(5):399-412.
Ellithy HN, Ahmed SH, Shahin GH, Matter MM, Talatt M. The impact of Fc gamma receptor IIa and IIIa gene polymorphisms on the therapeutic response of rituximab in Egyptian adult immune thrombocytopenic purpura. Hematology. 2018;23(3):169-74. doi: 10.1080/10245332.2017.1371479
Ellis JA, Ong B. The MassARRAY® System for Targeted SNP Genotyping. Methods Mol Biol. 2017;1492:77-94. doi: 10.1007/978-1-4939-6442-0_5
Qian C, Yan W, Li T, Cui Q, Liu P, Gu M, et al. Differential Expression of MiR-106b-5p and MiR-200c-3p in Newly Diagnosed Versus Chronic Primary Immune Thrombocytopenia Patients Based on Systematic Analysis. Cell Physiol Biochem. 2018;45(1):301-18. doi: 10.1159/000486811
Zhang M, Guo B. Use of bioinformatic analyses in identifying characteristic genes and mechanisms active in the progression of idiopathic thrombocytopenic purpura in individuals with differentypes. JIntMedRes. 2020;48(11):300060520971437. doi: 10.1177/0300060520971437
Mondoloni M, Guyon A, Descroix V, Lescaille G. Purpura thrombopénique immunologique [Immune thrombocytopenic purpura]. Rev Prat. 2019;69(3):290. French.
Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115(2):168-86. doi: 10.1182/blood-2009-06-225565
Clynes R. Immune complexes as therapy for autoimmunity. J Clin Invest. 2005;115(1):25-7. doi: 10.1172/JCI23994
Worrest T, Cunningham A, Dewey E, Deloughery TG, Gilbert E, Sheppard BC, et al. Immune Thrombocytopenic Purpura Splenectomy in the Context of New Medical Therapies. J Surg Res. 2020;245:643-8. doi: 10.1016/j.jss.2019.06.092
- Resumen visto - 266 veces
- PDF descargado - 135 veces
- HTML descargado - 271 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Salud, 2023
Afiliaciones
Valeria Vásquez Estrada
Universidad Pontificia Bolivariana, Medellín, Colombia
Laura Duque Echeverri
Universidad Pontificia Bolivariana, Medellín, Colombia
Lina María Martínez Sánchez
Universidad Pontificia Bolivariana, Medellín, Colombia