Biomarcadores para el diagnóstico del síndrome de reconstitución inmune
Issue | Vol. 7 Núm. 1 (2023): Ciencia y Salud, enero-marzo |
DOI | |
Publicado | mar 9, 2023 |
Estadísticas |
Resumen
Introducción: el síndrome inflamatorio de reconstitución inmune es una complicación clínica dada en algunas personas infectadas con el virus de la inmunodeficiencia humana (VIH) luego de empezar la terapia antirretroviral; se destaca por la producción de citoquinas proinflamatorias, que se han estudiado como posibles biomarcadores que puedan orientar para el diagnóstico y pronóstico de esta condición clínica.
Objetivo: llevar a cabo una revisión actualizada de los avances en los biomarcadores para el diagnóstico de SIRI, resaltando la importancia de las moléculas inflamatorias y los exosomas, tanto en su patogénesis como un posible Gold estándar para la confirmación de este estado inflamatorio.
Metodología: se realizó una revisión bibliográfica en bases de datos, como Science Direct, PubMed, Scopus y Medline, partiendo de los siguientes términos MeSH: síndrome inflamatorio de reconstitución, enfermedades del sistema inmune, biomarcadores, fármacos antiVIH, plasma.
Conclusión: cada vez existen más avances en la identificación de moléculas que pueden servir como biomarcadores de SIRI, buscando un oportuno diagnóstico, monitoreo de la progresión clínica, mejor respuesta al tratamiento y más hallazgos sobre la fisiopatología, pero persiste la necesidad de encontrar un Gold estándar que proporcione criterios para su sospecha y confirmación.
Ramon-Luing LA, Ocaña-Guzman R, Téllez-Navarrete NA, Preciado-García M, Romero-Rodríguez DP, Espinosa E, et al. High Levels of TNF-α and TIM-3 as a Biomarker of Immune Reconstitution Inflammatory Syndrome in People with HIV Infection. Life (Basel). 2021;11(6):527. doi: 10.3390/life11060527
Pei L, Fukutani KF, Tibúrcio R, Rupert A, Dahlstrom EW, Galindo F, et al. Plasma Metabolomics Reveals Dysregulated Metabolic Signatures in HIV-Associated Immune Reconstitution Inflammatory Syndrome. Front Immunol. 2021;12:693074. doi: 10.3389/fimmu.2021.693074
Tibúrcio R, Barreto-Duarte B, Naredren G, Queiroz ATL, Anbalagan S, Nayak K, et al. Dynamics of T-Lymphocyte Activation Related to Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome in Persons With Advanced HIV. Front Immunol. 2021;12:757-843. doi: 10.3389/fimmu.2021.757843
Hidrón A, González Á. Síndrome inflamatorio de reconstitución inmune en pacientes infectados con el virus de la inmunodeficiencia humana y afecciones fúngicas. Infectio [Internet]. 2012;16:51–8. Disponible en doi:10.1016/S0123-9392 (12)70027-9
Wong CS, Richards ES, Pei L, Sereti I. Immune reconstitution inflammatory syndrome in HIV infection: taking the bad with the good. Oral Dis. 2017;(7):822-7. doi: 10.1111/odi.12606
Sereti I, Sheikh V, Schaffer D, Phanuphak N, Gabriel E, Wang J, et al. Prospective International Study of Incidence and Predictors of Immune Reconstitution Inflammatory Syndrome and Death in People Living With Human Immunodeficiency Virus and Severe Lymphopenia. Clinical Infectious Diseases. 2020;71(3):652–60. doi.org/10.1093/cid/ciz877
Suryana KA. Challenge in Diagnosis of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome (TB-IRIS). HIV AIDS (Auckl). 2020;12:263-9. doi: 10.2147/HIV.S254105
Thambuchetty N, Mehta K, Arumugam K, Shekarappa UG, Idiculla J, Shet A. The Epidemiology of IRIS in Southern India: An Observational Cohort Study.JIntAssocProvidAIDSCare.2017;16(5):475-80. doi: 10.1177/2325957417702485
Rateni L, Ghersevich S. Relación inmunoendócrina en infecciones crónicas. Síndrome de Reconstitución Inmune en pacientes infectados por el virus de inmunodeficiencia humana. ByPC [Internet]. 2021;83(3):35-41. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152017000100248
Shelburne SA, Montes M, Hamill RJ. Immune reconstitution inflammatory syndrome: more answers, more questions. J Antimicrob Chemother. 2006;57(2):167-70. doi: 10.1093/jac/dki444
Bowen L, Nath A, Smith B. CNS immune reconstitution inflammatory syndrome. Handb Clin Neurol. 2018;152:167-76. doi: 10.1016/B978-0-444-63849-6.00013-X
Cadena J, Thompson GR 3rd, Ho TT, Medina E, Hughes DW, Patterson TF. Immune reconstitution inflammatory syndrome after cessation of the tumor necrosis factor alpha blocker adalimumab in cryptococcal pneumonia. Diagn Microbiol Infect Dis. 2009;64(3):327-30. doi: 10.1016/j.diagmicrobio.2009.03.019
Cheng VC, Yuen KY, Chan WM, Wong SS, Ma ES, Chan RM. Immunorestitution disease involving the innate and adaptive response. Clin Infect Dis. 2000;30(6):882-92. doi: 10.1086/313809
Seddiki N, French M. COVID-19 and HIV-Associated Immune Reconstitution Inflammatory Syndrome: Emergence of Pathogen-Specific Immune Responses Adding Fuel to the Fire. Front Immunol. 2021;12:649567. doi: 10.3389/fimmu.2021.649567
Hsu DC, Breglio KF, Pei L, Wong CS, Andrade BB, Sheikh V, et al. Emergence of Polyfunctional Cytotoxic CD4+ T Cells in Mycobacterium avium Immune Reconstitution Inflammatory Syndrome in Human Immunodeficiency Virus-Infected Patients. Clin Infect Dis. 2018;67(3):437-46. doi 10.1093/cid/ciy016
Briceño O, Peralta A, Garrido D, Romero K, Chávez M, Alvarado de la Barrera C, et al. Characterization of CD31 expression in CD4+ and CD8+T cell subpopulations in chronic untreated HIV infection. Immunology Letters. 2021;235:22-31. doi.org/10.1016/j.imlet.2021.04.004
Sueki H, Mizukawa Y, Aoyama Y. Immune reconstitution inflammatory syndrome in non-HIV immunosuppressed patients. Journal of Dermatology 2018;45(1):3-9
Rateni L, Lupo S, Racca L, Palazzi J, Ghersevich S. Assessing endocrine and immune parameters in human im-munodeficiency virus-infected patients before and after the immune reconstitution inflammatory syndrome. Arch Endocrinol Metab. 2018;62(1):64-71
Verbeek E, Colditz I, Blache D, Lee C. Chronic stress influences attentional and judgement bias and the activity of the HPA axis in sheep. PLoS ONE. 2019;1.
Vinhaes CL, Araujo-Pereira M, Tibúrcio R, Cubillos-Angulo JM, Demitto FO, Akrami KM, et al. Systemic Inflammation Associated With Immune Reconstitution Inflammatory Syndrome in Persons Living With HIV. Life (Basel). 2021;11(1):65. doi: 10.3390/life11010065
Ravimohan S, Tamuhla N, Nfanyana K, Steenhoff AP, Letlhogile R, Frank I, et al. Robust Reconstitution of Tuberculosis-Specific Polyfunctional CD4+ T-Cell Responses and Rising Systemic Interleukin 6 in Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Clin Infect Dis. 2016;62(6):795–803. doi: 10.1093/cid/civ978
Hammoud D, Boulougoura A, Papadakis G, Wang J, Dodd L, Rupert A, et al. Increased Metabolic Activity on F-Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Human Immunodeficiency Virus–Associated Immune Reconstitution Inflammatory Syndrome. Clinical Infectious Diseases. 2019;68(2):229-38. doi 10.1093/cid/ciy454
Akkaya B, Roesler AS, Miozzo P, Theall BP, Al Souz J, Smelkinson MG, et al. Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged Cd4(+) T Cell Activation. J Immunol, 2018;201(11):3294–306. doi: 10.4049/jimmunol.1800753
Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, et al. The Translational Machinery of Human Cd4+ T Cells Is Poised for Activation and Controls the Switch From Quiescence to Metabolic Remodeling. Cell Metab, 2018;28(6):895–906.e5. doi: 10.1016/j.cmet.2018. 08.009
Collins JM, Walker DI, Jones DP, Tukvadze N, Liu KH, Tran VT, et al. High-Resolution Plasma Metabolomics Analysis to Detect Mycobacterium Tuberculosis-Associated Metabolites That Distinguish Active Pulmonary Tuberculosis in Humans. PloS One, 2018;13(10):e0205398. doi: 10.1371/ journal.pone.0205398
RussoPST,FerreiraGR,CardozoLE,BürgerMC, Arias-Carrasco R, Maruyama SR, et al. CemiTool: A Bioconductor Package for Performing Comprehensive Modular Co-Expression Analyses. BMC Bioinf, 2018;19(1):56. doi: 10.1186/s12859-018-2053-1
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AA, et al. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD(+) Synthesis During Inflammation and Infection. Front Immunol, 2020;11:31. doi: 10.3389/fimmu.2020.00031
Yap SH, Abdullah NK, McStea M, Takayama K, Chong ML, Crisci E, et al. HIV/Human Herpesvirus Co-Infections: Impact on Tryptophan-Kynurenine Pathway and Immune Reconstitution. PloS One, 2017;12(10):e0186000. doi: 10.1371/ journal.pone.0186000
Vinhaes CL, Oliveira-de-Souza D, Silveira-Mattos PS, Nogueira B, Shi R, Wei W, et al. Changes in Inflammatory Protein and Lipid Mediator Profiles Persist After Antitubercular Treatment of Pulmonary and Extrapulmonary Tuberculosis: A Prospective Cohort Study. Cytokine, 2019;123:154759. doi: 10.1016/j.cyto.2019.154759
Chettimada S, Lorenz DR, Misra V, Dillon ST, Reeves RK, Manickam C, et al. Exosome Markers Associated With Immune Activation and Oxidative Stress in HIV Patients on Antiretroviral Therapy. Sci Rep, 2018;8(1):7227. doi: 10.1038/ s41598-018-25515-4
Lee S, Byakwaga H, Boum Y, Burdo TH, Williams KC, Lederman MM, et al. Immunologic Pathways That Predict Mortality in HIV-Infected Ugandans Initiating Antiretroviral Therapy. J Infect Dis, 2017;215(8):1270–4. doi: 10.1093/infdis/jix113
Dwivedy A, Ashraf A, Jha B, Kumar D, Agarwal N, Biswal BK. De Novo Histidine Biosynthesis Protects Mycobacterium Tuberculosis From Host IFN-Gamma Mediated Histidine Starvation. Commun Biol, 2021;4(1):410. doi: 10.1038/s42 003-021-01926-4
Silva CAM, Graham B, Webb K, Ashton LV, Harton M, Luetkemeyer AF, et al. A Pilot Metabolomics Study of Tuberculosis Immune Reconstitution Inflammatory Syndrome. Int J Infect Dis, 2019;84:30–8. doi: 10.1016/j.ijid.2019.04.015
Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M. Plasma Proteome Profiling to Assess Human Health and Disease. Cell Syst, 2016;2(3):185-95. doi: 10.1016/j.cels.2016.02.015
Teow SY, Nordin AC, Ali SA, Khoo AS. Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity? Adv Virol. 2016;2016:9852494. doi: 10.1155/2016/9852494
Rallón N, García M, García-Samaniego J, Cabello A, Álvarez B, Restrepo C, et al. Expression of PD-1 and Tim-3 markers of T-cell exhaustion is associated with CD4 dynamics during the course of untreated and treated HIV infection. PLoS One, 2018;13(3):e0193829. doi: 10.1371/journal. pone.0193829
Duffy FJ, Weiner J 3rd, Hansen S, Tabb DL, Suliman S, Thompson E, et al. Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Front Immunol, 2019;10:527. doi: 10.3389/fimmu.2019.00527
Dutta NK, Tornheim JA, Fukutani KF, Paradkar M, Tiburcio RT, Kinikar A, et al. Integration of Metabolomics and Transcriptomics Reveals Novel Biomarkers in the Blood for Tuberculosis Diagnosis in Children. Sci Rep, 2020;10(1):19527. doi: 10.1038/s41598-020-75513-8
Nosik M, Ryzhov K, Rymanova I, Sobkin A, Kravtchenko A, Kuimova U, et al. Dynamics of Plasmatic Levels of Pro and Anti-Inflammatory Cytokines in HIV-Infected Individuals with M. tuberculosis Co-Infection. Microorganisms. 2021;9(11):2291. doi: 10.3390/microorganisms9112291
- Resumen visto - 430 veces
- PDF descargado - 290 veces
- HTML descargado - 491 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Salud, 2023
Afiliaciones
Sara Isabel Osorio Mazo
Universidad Pontificia Bolivariana. Medellín, Colombia