Posibilidades de la terapia antioxidante en diabetes mellitus tipo 2. Estudio del estrés oxidativo en una muestra poblacional de pacientes diabéticos
Issue | Vol. 4 Núm. 3 (2020): Ciencia y Salud, septiempre-diciembre |
DOI | |
Publicado | sep 18, 2020 |
Estadísticas |
Resumen
Introducción: el organismo se expone cotidianamente a diferentes agentes que provocan reacciones oxidativas normalmente controladas. La sobreproducción de especies reactivas del oxígeno y/o la deficiencia de antioxidantes lleva al estrés oxidativo (EO) asociado a patologías crónicas que contribuye a un peor pronóstico de las enfermedades. Una de esas patologías crónicas es la diabetes mellitus (DM), en la que se ha demostrado una gran participación del EO en su fisiopatología y en el desarrollo de complicaciones. Se determinó el índice de EO (IEO) en individuos con DM y en un grupo sano control, para evaluar su posible correlación y grado de daño oxidativo, como estrategia para justificar una intervención potencial con una terapia antioxidante adyuvante al tratamiento convencional.
Materiales y métodos: se midió IEO en una población de 110 individuos con DM, constituida por 37 casos de DM tipo 1 (DMT1) y 73 del tipo 2 (DMT2) en edades entre 50 y 70 años escogidos al azar y se comparó con los valores de un grupo control de voluntarios sanos. El objetivo del ensayo clínico fue definir el grado de correlación entre los niveles del IEO y la severidad del daño oxidativo, ponderado a partir de una fórmula cualitativa, a través de la medición de nueve biomarcadores del EO en lisados de eritrocitos.
Discusión: la prevención o la detención de las comorbilidades de la DM puede que descanse en el futuro en la identificación precisa de los biomarcadores y su contrapartida reguladora. La incorporación de una terapia utilizando un protocolo con antioxidantes (AO) adyuvantes al manejo estándar de la DMT2 podría proveer resultados más eficaces para el control hiperglucémico y, por tanto, para inducir el equilibrio redox. Los resultados demuestran que ese tipo de terapia no sería eficaz en DMT1. Es determinante el reconocimiento de la extensión y tipo de daño oxidativo de las poblaciones específicas, mediante la creación y utilización de una línea de base con los biomarcadores alterados más frecuentemente. Esta línea de base ayudará a definir la mejor estrategia antioxidante a aplicar, porque el polimorfismo genético, el ambiente y los hábitos de vida actúan puntualmente en el tipo respuesta al EO. Una estrategia beneficiosa a valorar puede ser la del desarrollo de nuevos fármacos con efectos antioxidantes o de productos capaces de reforzar el sistema fisiológico de antioxidación a partir de sustratos naturales y la elaboración de combinaciones de dosis fijas de AO eficaces que ataquen las causas el EO en la DM. El objetivo final será el de revertir el daño oxidativo para prevenir la instalación de complicaciones o frenarlas.
Conclusiones: el uso del IEO con distintos marcadores ayuda a la especificidad del diagnóstico del EO, pero para que la elección de los marcadores sea la correcta, esta debe estar definida por el objetivo y el diseño del estudio, así como por la relevancia clínica en los sujetos seleccionados, tal cual fue el aplicado en el ensayo realizado. Los resultados obtenidos demuestran la potencialidad del uso de la terapia antioxidante en DMT2, pero no así en la DMT1. La importancia clínica de los biomarcadores del EO en humanos debe provenir de un análisis crítico de los marcadores que refleje el estado general de redox en condiciones particulares y una orientación para una terapia antioxidante efectiva.
2. Baba SP, Bhatnagar A. Role of Thiols in Oxidative Stress. Current Opinion in Toxicology. 2018;7, 133-139. Doi: 10.1016/j.cotox.2018.03.005
3. Yang H, Jin X, Kei Lam C, Yan S. Oxidative stress and diabetes mellitus. Clinical Chemistry and Laboratory Medicine. 2011;49(11). Doi: 10.1515/cclm.2011.250
4. Di Meo S, Reed T, Venditti P, Victor V. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity. 2016;2016:1-44. Doi: 10.1155/2016/1245049
5. Gerber P, Rutter G. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxidants & Redox Signaling. 2017;26(10):501-18. Doi: 10.1089/ars.2016.6755
6. Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. Journal of Diabetes and its Complications. 2001;15(4):203-210. Doi: 10.1016/s1056-8727(01)00143-x
7. Maritim A, Sanders R, Watkins J. Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology. 2003;17(1):24-38. Doi: 10.1002/jbt.10058
8. Pouvreau C, Dayre A, Butkowski E, de Jong B, Jelinek H. Inflammation and oxidative stress markers in diabetes and hypertension. Journal of Inflammation Research. 2018;11:61-8. Doi: 10.2147/jir.s148911
9. Butkowski E, Jelinek H. Hyperglycaemia, oxidative stress and inflammatory markers. Redox Report. 2016;22(6):257-64. Doi: 10.1080/13510002.2016.1215643
10. American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2019. Diabetes Care. 2018;42(Supplement 1):S90-S102. Doi: 10.2337/dc19-s009
11. Robles-Rivera R, Castellanos-González J, Olvera-Montaño C, Flores-Martin R, López-Contreras A, Arevalo-Simental D et al. Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. Oxidative Medicine and Cellular Longevity. 2020;2020:1-23. Doi: 10.1155/2020/3096470
12. Zhang P, Li T, Wu X, Nice E, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine. 2020. Doi: 10.1007/s11684-019-0729-1
13. Pichardo R, González A, Ramírez W, Escaño F, Rodríguez C, Jiménez R et al. Estudio de los Factores de Riesgo Cardiovascular y Síndrome Metabólico en la República Dominicana (EFRICARD II). Revespcardiol.org. 2012. Disponible en: https://tinyurl.com/uys89nr [Acesso 10 Abril 2020]
14. Özdemirler G, Mehmetçik G, Öztezcan S, Toker G, Sivas A, Uysal M. Peroxidation Potential and Antioxidant Activity of Serum in Patients with Diabetes Mellitus and Myocardial Infarction. Hormone and Metabolic Research. 1995;27(04):194-6. Doi: 10.1055/s-2007-979938
15. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry. 2004;37(4):277-85. Doi: 10.1016/j.clinbiochem.2003.11.015
16. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412–22. Doi:10.1007/s13197-011-0251-1
17. Esterbauer H, Cheeseman K. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants. 1990;407-21. Doi: 10.1016/0076-6879(90)86134-h
18. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488–91
19. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205. Doi:10.1016/0003-2697(68)90092-4
20. Del Mestro R, McDonald W. Oxidative enzymes in tissue homogenates. En: Greenwald R, ed. Handbook for Oxygen Radical Research. Boca Raton, FL: CRC Press; 2018. p. 291-296.
21. Haining J, Legan J. Improved assay for catalase based upon steady-state substrate concentration. Analytical Biochemistry. 1972;45(2):469-79. Doi: 10.1016/0003-2697(72)90209-6
22. Gil L, Martínez G, González I, Tarinas A, Alvarez A, Giuliani A et al. Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacological Research. 2003;47(3):217-24. Doi: 10.1016/s1043-6618(02)00320-1
23. Sas K, Szabó E, Vécsei L. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules. 2018;23(1):191. Doi: 10.3390/molecules23010191
24. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC. Clinical relevance of biomarkers of oxidative stress. Antioxidants & redox signaling. 2015;23(14):1144-70. Disponible en https://doi.org/10.1089/ars.2015.6317
25. Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative medicine and cellular longevity. 2017;2017. Disponible en https://doi.org/10.1155/2017/6501046
26. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49. Doi: 10.1016/j.diabres.2013.11.002
27. Butterfield D, Dalle-Donne I. Redox proteomics: from protein modifications to cellular dysfunction and disease. Mass Spectrometry Reviews. 2013;33(1):1-6. Doi: 10.1002/mas.21404
28. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation Research, 2010;107(9), 1058-70. Disponible en doi.org/10.1161/CIRCRESAHA.110.223545
29. Mondal LK, Bhaduri G, Bhattacharya B. Biochemical scenario behind initiation of diabetic retinopathy in type 2 diabetes mellitus. Indian J Ophthalmol. 2018;66(4):535–40. Doi:10.4103/ijo.IJO_1121_17
30. Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pacific Journal of Tropical Medicine. 2016;9(9):825-831. Doi: 10.1016/j.apjtm.2016.07.001
31. Brownlee M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes. 2005;54(6):1615-25. Doi: 10.2337/diabetes.54.6.1615
32. Tabit C, Shenouda S, Holbrook M, Frame A, Kluge M, Duess M et al. Protein Kinase-C Beta Activation Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus. Journal of the American College of Cardiology. 2012;59(13):E2133. Doi: 10.1016/s0735-1097(12)62134-2
33. Audero E, Cascone I, Maniero F, Napione L, Arese M, Lanfrancone L, Bussolino F. Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J Biol Chem. 2004;279(13), 13224-33. Doi: 10.1074/jbc.M307456200
34. Camici G, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M et al. Genetic deletion of p66Shc adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proceedings of the National Academy of Sciences. 2007;104(12):5217-22. Doi: 10.1073/pnas.0609656104
35. Fadini G, Albiero M, Bonora B, Poncina N, Vigili de Kreutzenberg S, Avogaro A. p66Shc gene expression in peripheral blood mononuclear cells and progression of diabetic complications. Cardiovascular Diabetology. 2018;17(1). Doi: 10.1186/s12933-018-0660-9
36. Ceriello A. The emerging challenge in diabetes: The “metabolic memory”. Vascular Pharmacology. 2012;57(5-6):133-8. Doi: 10.1016/j.vph.2012.05.005
37. Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circulation Research. 2010;107(12):1403-13. Doi: 10.1161/CIRCRESAHA.110.223552.49
38. Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230(2):191-7. Doi: 10.1016/j.atherosclerosis.2013.07.003
39. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14. Doi:10.4196/kjpp.2014.18.1.1
40. Schmeichel A, Schmelzer J, Low P. Oxidative Injury and Apoptosis of Dorsal Root Ganglion Neurons in Chronic Experimental Diabetic Neuropathy. Diabetes. 2003;52(1):165-71. Doi: 10.2337/diabetes.52.1.165
41. Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacology & therapeutics. 2008 Oct 1;120(1):1-34. Disponible en https://doi.org/10.1016/j.pharmthera.2008.05.005
42. Kasznicki J, Kosmalski M, Sliwinska A, Mrowicka M, Stanczyk M, Majsterek I, Drzewoski J. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Molecular Biology Reports. 2012 Sep 1;39(9):8669-78. Disponible en https://doi.org/10.1007/s11033-012-1722-9
43. Ziyadeh F, Hoffman B, Han D, Iglesias-de la Cruz M, Hong S, Isono M et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proceedings of the National Academy of Sciences. 2000;97(14):8015-20. Doi: 10.1073/pnas.120055097
44. Friedman R, Gross JL. Evolution of glomerular filtration rate in proteinuric NIDDM patients. Diabetes Care. 1991;14(5):355–9. Doi:10.2337/diacare.14.5.355.
45. De Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9. Doi:10.1001/jama.2011.861
46. Miranda-Díaz A, Pazarín-Villaseñor L, Yanowsky-Escatell F, Andrade-Sierra J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. Journal of Diabetes Research. 2016;2016:1-7. Doi: 10.1155/2016/7047238
47. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008 Jun 1;57(6):1446-54. Disponible en https://doi.org/10.2337/db08-0057
48. Xu D, Li Y, Meng X, Zhou T, Zhou Y, Zheng J et al. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences. 2017;18(1):96. Doi: 10.3390/ijms18010096
49. Xu D, Li Y, Meng X, Zhou T, Zhou Y, Zheng J et al. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences. 2017;18(1):96. Doi: 10.3390/ijms18010096
50. Zhou Y, Zheng J, Li Y, Xu D, Li S, Chen Y et al. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients. 2016;8(8):515. Doi: 10.3390/nu8080515
51. Núñez-Musa R, Núñez-Sellés A, Mañón Rossi W, Marmolejos R, Martínez-Sánchez G. Correlación entre el grado de hipertensión arterial y el índice de estrés oxidativo. Estudio de cohorte en una población de pacientes hipertensos sistémicos en República Dominicana. Ciencia y Salud. 2019;3(2):17-33. Doi: 10.22206/cysa.2019.v3i2.pp17-33
52. Li C, Miao X, Li F, Wang S, Liu Q, Wang Y et al. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Oxidative Medicine and Cellular Longevity. 2017;2017:1-15. doi: 10.1155/2017/9702820
53. Xu B, Chiu J, Feng B, Chen S, Chakrabarti S. PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes/Metabolism Research and Reviews. 2008;24(5):404-12. Doi: 10.1002/dmrr.842
54. Braidy N, Izadi M, Sureda A, Jonaidi-Jafari N, Banki A, Nabavi S et al. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. Journal of Cellular Physiology. 2017;233(4):2705-14. Doi: 10.1002/jcp.26044
55. Samuni AM, DeGraff W, Krishna MC, Mitchell JB. Cellular sites of H2O2-induced damage and their protection by nitroxides. Biochimica et Biophysica Acta (BBA)-General Subjects. 2001 Feb 16;1525(1-2):70-6. Disponible en https://doi.org/10.1016/S0304-4165(00)00172-0
56. Shahidi S, Vanaie A, Iraj B, Siadat Z, Kabirzade M, Shakiba F et al. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy. Journal of Research in Medical Sciences. 2019;24(1):77. Doi: 10.4103/jrms.jrms_1055_18
57. Ziegler D, Low P, Litchy W, Boulton A, Vinik A, Freeman R et al. Efficacy and Safety of Antioxidant Treatment With α-Lipoic Acid Over 4 Years in Diabetic Polyneuropathy. Diabetes Care. 2011;34(9):2054-60. Doi: 10.2337/dc11-0503
58. Kumar A, Sharma S. NF-κB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochemical and Biophysical Research Communications. 2010;394(2):360-5. Doi: 10.1016/j.bbrc.2010.03.014
59. Thakur S, Rachana. Antioxidants: Futuristic Therapeutics in the Field of Diabetic Neuropathy. International Journal of Biotechnology and Bioengineering Research. 2013;4(4):313-20
60. Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sciences. 2019;216:101-10. Doi: 10.1016/j.lfs.2018.10.055
61. Biesalski HK, Grune T, Tinz J, Zöllner I, Blumberg JB. Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials. Nutrients. 2010;2(9):929–49. Doi: 10.3390/nu2090929
62. Núñez-Sellés A. Antioxidant therapy: myth or reality? Journal of the Brazilian Chemical Society. 2005;16(4):699-710. Doi: 10.1590/s0103-50532005000500004
63. Escobar AAL, Pérez OY, Vera GM, et al. Effect of Vimang® supplementation on oxidative stress markers in young patients with type 1 diabetes mellitus. Revista Cubana de Endocrinología. 2011;22(2):103-17
64. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A et al. The Role of Oxidative Stress in the Pathogenesis of Type 2 Diabetes Mellitus Micro- and Macrovascular Complications: Avenues for a Mechanistic-Based Therapeutic Approach. Current Diabetes Reviews. 2011;7(5):313-24. Doi: 10.2174/157339911797415585
- Resumen visto - 1199 veces
- PDF descargado - 485 veces
- HTML descargado - 563 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Salud, 2020
Afiliaciones
Rodolfo Núñez-Musa
Contract Research Organization CREODR, República Dominicana
Alberto J. Núñez-Sellés
Universidad Nacional Evangélica (UNEV), República Dominicana
Wilfredo Mañón Rossi
Contract Research Organization CREODR, República Dominicana
Rafael Guillén Marmolejos
Contract Research Organization CREODR, República Dominicana
Gregorio Martínez-Sánchez
Consultor Independiente, Ancona, Italy
Antonio Selman-Almonte
Contract Research Organization CREODR, República Dominicana