Correlación entre el grado de hipertensión arterial y el índice de estrés oxidativo. Estudio de cohorte en una población de pacientes hipertensos sistémicos en República Dominicana
Issue | Vol. 3 Núm. 2 (2019): Ciencia y Salud, mayo-agosto |
DOI | |
Publicado | jul 26, 2019 |
Estadísticas |
Resumen
Introducción: la hipertensión arterial (HTA) es una de las mayores cargas de enfermedad y riesgo para infarto cardíaco, la insuficiencia cardíaca y el fallo renal. Se reconoce que el estrés oxidativo (EO) es un determinante en el desarrollo de complicaciones y el progreso de la HTA. Se determinó el índice de EO (IEO) en individuos con HTA y en un grupo sano control, para evaluar su posible correlación.
Materiales y métodos: se midió IEO en una población de 112 individuos con HTA de distintos grados entre 50 y 70 años escogidos al azar y se comparó con los valores de un grupo control de voluntarios sanos, con la intención de definir el grado de correlación entre los niveles del IEO y la severidad de HTA, mediante la medición de biomarcadores para el EO en lisado de eritrocitos.
Resultados: a pesar de que los beneficios de la terapia antioxidante (TAO) no han sido definitivamente probadas, en gran parte porque las enfermedades complejas no dependen de un solo componente fisiopatogénico, el EO sigue siendo una piedra angular en el desarrollo de complicaciones y el empeoramiento de los cuadros clínicos de muchos padecimientos. La demostración de biomarcardores específicos mejora la posibilidad de una TAO dirigida. El presente ensayo demostró que la edad, el género y la etnia no influyen en el IEO y que el EO fue severo en los casos de HTA III, moderado en HTA II y estuvo ausente en el subgrupo con HTA grado I.
Conclusiones: estos resultados sugieren una relación entre los niveles de EO y severidad de HTA y sustenta evidencias para diseñar nuevos ensayos clínicos que evalúen la eficacia de una TAO adyuvante en el manejo de la HTA.
2. Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34(4): 431-40. doi: 10.1038/hr.2010.264.
3. Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci. 2014; 19(4): 358-67.
4. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 2005;179(1): 43-9. doi: https://doi.org/10.1016/j.atherosclerosis.2004.10.018.
5. Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell biochemistry and biophysics. 2005;43(2): 289-330. doi: https://doi.org/10.1385/CBB:43:2:289.
6. Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70(4): 660-7. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.07802.
7. Vella RK, Pullen C, Coulson FR, Fenning AS. Resveratrol prevents cardiovascular complications in the SHR/STZ rat by reductions in oxidative stress and inflammation. BioMed research international. 2015;2015: ID 918123. doi: http://dx.doi.org/10.1155/2015/918123.
8. Lau YS, Ling WC, Dharmani Murugan MR. Boldine ameliorates vascular oxidative stress and endothelial dysfunction: Therapeutic implication for hypertension and diabetes. J Cardiovasc Pharmacol. 2015;65(6): 522-31. doi: 10.1097/FJC.0000000000000185.
9. Sinha N, Kumar Dabla P. Oxidative stress and antioxidants in hypertension–a current review. Curr hypertens Rev. 2015;11(2):132-42. doi: 10.2174/1573402111666150529130922.
10. Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis. 2016;26(4): 285-92. doi: 10.1016/j.numecd.2016.01.006.
11. Pourvali K, Abbasi M, Mottaghi A. Role of superoxide dismutase 2 gene Ala16Val polymorphism and total antioxidant capacity in diabetes and its complications. Avicenna J Med Biotechnol. 2016;8(2): 48-56.
12. Mikhak B, Hunter D J, Spiegelman D, Platz E A, Wu K, Erdman J W Jr, Giovannucci E. Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis. 2008;29(12): 2335-40. doi:10.1093/carcin/bgn212.
13. Martins Gregório B, Benchimol De Souza D, Amorim de Morais Nascimento F, Matta L, Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Current pharmaceutical design. 2016;22(7): 859-69. doi: https://doi.org/10.1155/2017/3279061.
14. Putri AY, Thaha M. Role of oxidative stress on chronic kidney disease progression. Acta Med Indones. 2016;46(3): 244-52.
15. Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, et al. Protective effect of antioxidants on neuronal dysfunction and plasticity in Huntington’s disease. Oxidative medicine and cellular longevity. 2017;2017: ID 3279061. doi: https://doi.org/10.1155/2017/3279061.
16. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20(12): 21138-56. doi: https://doi.org/10.3390/molecules201219753.
17. Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. BioMed Res Int. 2015;2015: ID 515042. doi: http://dx.doi.org/10.1155/2015/515042.
18. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res. 2017;51(4): 428-38. doi: 10.1080/10715762.2017.1322205.
19. Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2015;2015: ID 875961. doi: 10.1155/2015/875961.
20. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31(5): 631-41. doi: 10.1016/j.cjca.2015.02.008.
21. Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol, 2008;101(10): S14-S19. doi: https://doi.org/10.1016/j.amjcard.2008.02.003.
22. Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atheroscl. 2009; 202(2): 321-29. doi: 10.1016/j.atherosclerosis.2008.06.006.
23. Ho E, Galougahi KK, Chia-Chi L, Bhindi R. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013;1: 483-91. doi: 10.1016/j.redox.2013.07.006.
24. Mañon-Rossi W, Garrido G, Nuñez-Selles AJ. Biomarkers of oxidative stress in antioxidant therapy. J Pharm Pharmacogn Res. 2016;4(2): 62-83.
25. Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med. 2015;82: 22-8. doi: https://doi.org/10.1016/j.freeradbiomed.2015.01.028.
26. Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: Current status and future prospects. Curr Med Chem. 2011;18(25): 3871-88. doi: 10.2174/092986711803414368.
27. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during Diabetes Mellitus. J Biomarkers. 2013; 2013: ID 378790. doi: doi.org/10.1155/2013/378790, 8 pp.
28. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14): 1144-70. doi: https://doi.org/10.1089/ars.2015.6317.
29. Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Long. 2017; 2017: ID 6501046. doi: doi.or/10.1155/2017/6501046.
30. Nuñez Selles AJ, Martinez G, Mañon Rossi W. Method for determining Oxidative Stress Index in patients with Diabetes Mellitus and Arterial Hypertension. Oficina Nacional de la Propiedad Industrial (ONAPI), República Dominicana, 2017; P2017-54, 32 pp.
31. Pichardo R, González A, Ramírez W, Escaño F, Jiménez R. Revista Española de Cardiología [Internet]. Revespcardiol.org. 2012 [citado 6 de mayo 2019]. Disponible en: https://tinyurl.com/y5mj4vp7.
32. Organización Panamericana de la Salud. República Dominicana [Internet]. Health in the Americas 2017. 2014 [citado 6 de mayo 2019]. Disponible en: https://tinyurl.com/y4jprc9h.
33. Oficina Nacional de Estadísticas. IX Censo Nacional de Población y Vivienda 2010 (Book, 2012) [WorldCat.org] [Internet]. Worldcat.org. 2012 [citado 6 de mayo 2019]. Disponible en: https://tinyurl.com/y6ps82yb.
34. Grupo de Trabajo para el manejo de la hipertensión arterial de la Sociedad Europea de Hipertensión (ESH) y la Sociedad Europea de Cardiología (ESC). Guía de práctica clínica de la ESH/ESC 2013 para el manejo de la hipertensión arterial [Internet]. Hipertension.cl. 2013 [citado 6 de mayo 2019]. Disponible en: https://tinyurl.com/y52xs3cv.
35. Ozdemirler G, Mehmetcik G, Oztezcan S, Toker G, Sivas A, Uysal M. Peroxidation potential and antioxidant activity of serum in patients with diabetes mellitus and myocardial infarction. Horm Metab Res. 1995;27(4): 194-6.
36. Miller N, Rice-Evans C, Davies MJ. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 1993;84(4): 407-12. doi: 10.1042/cs0840407.
37. Ozcan E. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS cation. Clin Biochem. 2004;37(4): 277-85. doi: https://doi.org/10.1016/j.clinbiochem.2003.11.015
38. Blois M. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181: 1199-00. doi: 10.1038/1811199a0.
39. Esterbauer H, Cheeseman KH, Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186: 407-21. doi: https://doi.org/10.1016/0076-6879(90)86134-H.
40. Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER. Age related changes in oxidised protein. J Biol Chem. 1987;262(12): 5488-91.
41. Sedlak J, Lindsay RH. Estimation of total protein bond and non-protein sulfhydryl group with Ellman’s reagent. Anal Biochem. 1968;25: 192-205.
42. Del Mestro R, McDonald W. Oxidative enzymes in tissue homogenates. En: Greenwald R, ed., CRC Handbook for Oxygen Radical Research. Boca Raton, Florida: CRC Press; 1985. pp. 291-6.
43. Haining JL, Legan JS. Improved assay for catalase based upon steady-state substrate concentration. Anal Biochem. 1972;45(2): 469-79. doi: https://doi.org/10.1016/0003-2697(72)90209-6.
44. Gil L, Martínez G, González I, Tarinas A, Álvarez A, Giuliani A, et al. Contribution to characterization of oxidative stress in HIV/AIDS patients, Pharmacol Res. 2003; 47(3):217-224. https://doi.org/10.1016/S1043-6618(02)00320-1.
45. Liochev SI. Reactive oxygen species and the free radical theory of aging Free Radic Biol Med. 2013;60:1-4. doi: 10.1016/j.freeradbiomed.
46. Lewis KN, Andziak B, Yang T, Buffenstein R. The naked mole-rat response to oxidative stress: just deal with it. Antioxid. Redox Signal. 2013;19(12): 1388-99. doi:10.1089/ars.2012.4911.
47. Holzerová E, Prokisch H. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol. 2015;63: 16-20. doi: 10.1016/j.biocel.2015.01.021.
48. Sas K, Szabó E, Vécsei L. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules. 2018;23(1). pii: E191. doi: 10.3390/molecules23010191.
49. Tan J, Xu X, Tong Z, Yu Q, Lin Y, Kuang W. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res. 2015;3: ID 15003. doi: 10.1038/boneres.2015.3.
50. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016: ID 3164734. doi: 10.1155/2016/3164734.
51. Birch‐Machin MA, Bowman A. Oxidative stress and ageing. Br J Dermatol. 2016 Oct;175 Suppl 2: 26-9. doi: 10.1111/bjd.14906.
52. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156(3): 274-85.
53. Leszek J, E Barreto G, Gasiorowski K, Koutsouraki E, Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15(3): 329-36.
54. Ezzati M. Methodology for assessment of environmental burden of disease – Annex 4.1 [Internet]. Who.int. 2010 [citado 7 de mayo 2019]. Disponible en: https://tinyurl.com/y6c4pkb3.
55. Leung AA, Daskalopoulou SS, Dasgupta K, McBrien K, Butalia S, Zarnke KB, et al. Hypertension Canada's 2017 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults. Can J Cardiol. 2017;33(5): 557-76. doi: https://doi.org/10.1016/j.cjca.2017.03.005.
56. Tran MT, Mitchell TM, Kennedy DT, Giles JT. Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy. 2001;21(7): 797-806.
57. Mrowka R. Recent Advances in Hypertension Research. Acta Physiol (Oxf). 2019;8: e13295. doi: 10.1111/apha.13295.
58. Kintscher U. The burden of hypertension. EuroIntervention. 2013;9 (Suppl R): R12-15. doi: 10.4244/EIJV9SRA3.
59. Yao EH, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C, et al. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res. 2007;30(11): 1119-28. doi: 10.1291/hypres.30.1119.
60. Profumo E, Buttari B, Saso L, Rigano R. Pleiotropic effects of statins in atherosclerotic disease: focus on the antioxidant activity of atorvastatin. Curr Top Med Chem. 2014;14(22): 2542-51. doi: 10.2174/1568026614666141203130324.
61. Simic DV, Mimic-Oka J, Pljesa-Ercegovac M, Savic-Radojevic A, Opacic M, Matic D, Simic T. Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension. J Hum Hypertens. 2006;20(2): 149-55. doi: https://doi.org/10.1038/sj.jhh.1001945.
62. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122(4): 339-52. doi: https://doi.org/10.1007/s00418-004-0696-7.
63. Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF, Vita JA. Treatment of hypertension with ascorbic acid. Lancet. 1999;354(9195): 2048-9. doi: https://doi.org/10.1016/S0140-6736(99)04410-4.
64. Fotherby MD, Williams JC, Forster LA, Craner P, Ferns GA. Effect of vitamin C on ambulatory blood pressure and plasma lipids in older persons. J Hypertens. 2000;18(4): 411-5.
65. Juraschek SP, Guallar E, Appel LJ, Miller ER 3rd. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;95(5): 1079-88. doi:10.3945/ajcn.111.027995.
66. Heart Protection Study Collaborative Group: MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet. 2002;360(9326): 23-33. doi: 10.1016/S0140-6736(02)09328-5.
67. Kim MK, Sasaki S, Sasazuki S, Okubo S, Hayashi M, Tsugane S. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension. 2002;40(6): 797-803.
68. Palumbo G, Avanzini F, Alli C, Roncaglioni MC, Ronchi E, Cristofari M, et al. Effects of vitamin E on clinic and ambulatory blood pressure in treated hypertensive patients: Collaborative Group of the Primary Prevention Project (PPP) Hypertension Study. Am J Hypertens. 2000;13(5 Pt 1): 564-7.
69. Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010 Nov;31(22): 2741-8. doi: 10.1093/eurheartj/ehq396.
70. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3): 145-53. doi: 10.1056/NEJM200001203420301.
71. Head GA, Shaw JE, Dunstan DW, Owen N, Magliano DJ, Chadban S, Zimmet P. Hypertension, white-coat hypertension and masked hypertension in Australia: findings from the Australian Diabetes, Obesity, and Lifestyle Study 3. J Hypertens; 2019. doi: 10.1097/HJH.0000000000002087. [Ahead of print].
72. Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34(6): 665-73. doi: https://doi.org/10.1038/hr.2011.39.
73. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, et al. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ Res. 2017;121(5): 564-74. doi:10.1161/CIRCRESAHA.117.310933.
74. Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol. 2006;4(3): 215-27. doi: https://doi.org/10.2174/157016106777698469.
75. Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, et al. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol Appl Pharmacol. 2000;164(3): 250-63. doi: https://doi.org/10.1006/taap.2000.8899.
76. Testa R, Bonfigli AR, Genovese S, De Nigris V, Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients. 2016;8(5). pii: E310. doi: 10.3390/nu8050310.
77. Tanveer A, Akram K, Farooq U, Hayat Z, Shafi A. Management of diabetic complications through fruit flavonoids as a natural remedy. Crit Rev Food Sci Nutr. 2017;57(7): 1411-22. doi: 10.1080/10408398.2014.1000482.
- Resumen visto - 1473 veces
- PDF descargado - 576 veces
- HTML descargado - 1180 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Salud, 2019
Afiliaciones
R. Núñez-Musa
Contract Research Organization CREODR, República Dominicana
A. J. Núñez-Sellés
Universidad Nacional Evangélica (UNEV), República Dominicana
W. Mañón Rossi
Contract Research Organization CREODR, República Dominicana
R. Guillén Marmolejos
Contract Research Organization CREODR, República Dominicana
G. Martínez-Sánchez
Consultor Independiente, Ancona, Italy