Aspectos históricos del teorema fundamental del cálculo y posibles mediaciones tecnológicas
Issue | Vol. 5 Núm. 1 (2021): Ciencia y Educación |
DOI | |
Publicado | mar 4, 2021 |
Estadísticas |
Resumen
Este artículo presenta aspectos históricos del Teorema Fundamental del Cálculo (TFC) que podrían ser mediados por herramientas tecnológicas. Esta exploración pretende identificar en los argumentos de Newton y de Leibniz, un potencial heurístico para ser incorporados en ambientes de aprendizaje del cálculo en las universidades. Se presentan los resultados de una exploración de actualización de los argumentos de Newton y de Leibniz con la mediación del software matemático Geogebra. Los resultados de esta exploración articulan factores históricos y tecnológicos del TFC, que podrían usarse de manera curricular, por ejemplo, en el diseño de tareas para la formación universitaria.
Aranda, C., & Callejo, M. (2015). Un experimento de enseñanza para la construcción del concepto de integral definida usando un programa de geometría dinámica. Departamento de Innovación y Formación Didáctica Universidad de Alicante, 1, 1–13. https://doi.org/10.1017/CBO9781107415324.004
Artigue, M., Douady, R., & Moreno, L. (1995). Ingeniería Didáctica En Educación Matemática. Grupo Editorial Iberoamérica. https://core.ac.uk/download/pdf/12341268.pdf
Bajrachrya, R. R. (2014). Student Application of the Fundamental Theorem of Calculus with Graphical Representations in Mathematics and Physics. August
Ball, J. M. (1989). A version of the Fundamental Theorem for young measures. Heriot-Watt University.
Barbin, E. (2006). Apports de l’histoire des mathématiques et de l’histoire des sciences dans l’enseignement. Trema, 26. https://journals.openedition.org/trema/64
Barbin, E., Guichard, J.-P., Moyon, M., Guyot, P., Morice-Singh, C., Métin, F., Bühler, M., Tournès, D., Chorlay, R., & Hamon, G. (2018). Let History into the Mathematics Classroom. In Let History into the Mathematics Classroom. https://doi.org/10.1007/978-3-319-57150-8
Bardi, J. S. (2006). The Calculus Wars. Newton, Leibniz, and the Greatest Mathematical Clash of All Time. Book.
Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22(4), 481–497. https://doi.org/10.1016/j.jma thb.2003.09.006
Biehler, R., Hochmuth, R., Göller, R., & Rück, H. (2017). Didactics of mathematics in higher education as a scientific discipline. Khdm Conference 2015, February. https://kobra.uni-kassel.de/bitstream/123456789/2016041950121/5/ khdm_report_17_05.pdf
Bognár, L., Éva, H., Joós, A., & Nagy, B. (2018). Improved learning environment for calculus courses. Journal of Applied Technical and Educational Sciences, 8(4). https://doi.org/10.24368/jates.v8i4.59
Boyer, C. B. (1959). The History of The Calculus and Its Conceptual Development. Dover Publications.
Bressoud, D. M. (2011). Historical reflections on teaching the fundamental theorem of integral calculus. American Mathematical Monthly, 118(2), 99–115. https://doi.org/10.4169/amer.math.monthly.118.02.099
Cabral, E., & Lee, P. (2000). A fundamental theorem of Kurzweil-Henstock integral in R^m. Real Analysis Exchange, 867–876.
Cantor, G. (2013). Elementos para la enseñanza de la integral definida como area bajo la curva. http://www.bdigital.unal.edu.co/39568/
Capote, G. E., Rizo, N., & Bravo, G. (2016). La formación de ingenieros en la actualidad. Una explicación necesaria. Revista Universidad y Sociedad, 8(1), 21–28.
Carlson, M., Persson, J., & Smith, N. (2002). Developing and connecting students’ notions of rateof-change and accumulation: The Fundamental Theorem of Calculus. Proceeding of the International Group for the Psychology of Mathematics Education Conference Held Jointly with the 25th PME-NA Conference, 165–172. https://doi.org/http://dx.doi.org/10.3109/14647273.2014.925591
Chae, S. B. (1995). Lebesgue Integration (S.-V. Berlin (ed.)).
Child, J. M. (1916). Geometrical Lectures (Isaac Barrow). The Open Court Publishing Company.
Coelho, C. (1998). Students’ understanding of the fundamental theorem of Calculus: An exploration of definitions, theorems and visual imagery. https://discovery.ucl.ac.uk/id/eprint/10020309/
Cordero, F. (2003). Reconstrucción de significados del Cálculo Integral. La noción de acumulación como una argumentación. Grupo Editorial Iberoamericana, January 2003. https://www.researchgate.net/publication/270959982_Reconstruccion_de_significados_del_Calculo_Integral_La_nocion_de_acumulacion_como_una_argumentacion
Dougherty, B. J., Zilliox, J. T., & Pateman, N. A. (2003). Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Volume 2. In Proceedings of the 25th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. http://www2.earlyalgebra.terc.edu/our_papers/2006/Martinez_BrizuelaPME30.pdf
Dreyfus, T. (1990). Advanced Mathematical Thinking. In Mathematics and cognicion (pp. 113–134). Cambridge University Press.
Dunham, W. (2005). The Calculus Gallery: Masterpieces. From Newton to Lebesgue. Princeton University Press.
Fauvel, J. (1991). Using history in mathematics education. For the Learning of Mathematics, 11(2), 3–6. http://www.jstor.org/stable/40248010
Fernandez, F. (2002). El análisis de contenido como ayuda metodológica para la investigación. Revista de Ciencias Sociales (San José), II(96), 35–53. https://www.redalyc.org/pdf/153/15309604.pdf
Font, V. (2011). Competencias profesionales en la formación inicial de profesores de matemáticas. Revista Iberoamericana de Educación Matemática, 26.
Godino, J., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema Rio Claro, 31(57), 90–113. https://doi.org/10.1590/1980-4415v31n57a05
Golden, J. (2011). Second Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/tFXTp3ar
Gorgone, H., Galli, D., Acevedo, F., Guillen, G., Diab, J., & Voda, D. (2010). Nuevo enfoque en la enseñanza de la ingenieria. In UNNOBA.
Guicciardini, N. (2008). Analysis and synthesis in Newton’s mathematical work. In The Cambridge Companion to Newton (pp. 308–328). https://doi.org/10.1017/ccol0521651778.xml.010
Guicciardini, N. (2009). Isaac Newton on mathematical certainty and method. https://doi.org/10.1007/s10086-013-1369-8
Guicciardini, N. (2011). Newton. Carocci Editore
Hazzan, O., & Leron, U. (1996). Students’ use and misuse of mathematical theorems: The case of Lagrange’s Theorem. For the Learning of Mathematics, 16(1), 23–26. https://doi.org/10.1006/anbe.2000.1610
Hodgson, B. R. (n.d.). La contribución de la Historia de las Matemáticas a la Formación de Profesores de Matemáticas de Educación. 91–108.
Hohenwarter, M., Kreis, Y., & Lavicza, Z. (2008). Teaching and calculus with free dynamic mathematics software GeoGebra. 11th International Congress on Mathematical Education, January, 1–9. https://doi.org/10.1080/0020739X.2017.1298855
ICMI. (2002). History in mathematics education (International Commission on Mathematical Instruction) (J. Fauvel & A. Van Maanen (eds.)). Kluwer Academic Publishers.
Iliffe, R. (Cambridge U. N. P. (2011). The October of 1666 Tract on Fluxions. MS Add. 3958.3, Ff. 48v-63v, Cambridge University Library, Cambridge, UK. http://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00100
Katz, V. (1993). Using the History of Calculus to Teach Calculus. 243–249.
Katz, V. (2008). A History of Mathematics. Pearson.
Klisinska, A. (2005). The Fundamental Theorem of Calculus_ A case study into the didactic transposition of proof. In Integration The Vlsi Journal. https://doi.org/10.2307/2307007
Kouropatov, A., & Dreyfus, T. (2013). Constructing the Fundamental Theorem of Calculus. Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education Methodology and Methods in Mathematics Education, 3, 201–208.
Kumar, R. (2015). Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/JUpgHnhs
Lacoste, P. (2016). Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/wdUED3wy
Lopez, J. (2011). Reflexions On Leibniz’ Proof Of The Fundamental Theorem Of Calculus. Research Gate. https://doi.org/10.13140/RG.2.1.4804.2405
Macdonald, A. (1998). The fundamental theorem of geometric calculus via a generalized riemann integral. Advances in Applied Clifford Algebras, 8(1), 5–16. https://doi.org/10.1007/bf03041922
Macduffee, C. (1947). Objectives in Calculus. The American Mathematical Monthly, 94(4), 335 –337. www.jstor.org/stable/2305209
Majerek, D. (2014). Application of Geogebra for Teaching Mathematics. Advances in Science and Technology Research Journal, 8(January), 51–54. https://doi.org/10.12913/22998624/567
McCullough, J. (2017). Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/fAyYZYm2
Mena, R. (2014). The Fundamental Theorem of Calculus. http://web.csulb.edu/~rmena/410/Section8.pdf
Moreno, I. (2007). Consideraciones para una enseñanza de calidad en ingeniería. Revista Pedagogía Universitaria, XII(1), 38–46.
Najwa, A., Kamin, Y., & Khair, M. (2018). Competencies of Engineering Graduates: What are the Employer’s Expectations? International Journal of Engineering & Technology, 7(2.29), 519. https://doi.org/10.14419/ijet.v7i2.29.13811
Olaya, C. (2013). Más ingeniería y menos ciencia por favor. XI Congreso Latinoamericano de Dinámica de Sistemas Instituto Tecnológico y de Estudios Superiores de Monterrey, 6.
Palma, C. (2012). Nuevos retos para el ingeniero en el siglo XXI. ING-NOVACIÓN., 4, 61–65. http://www.redicces.org.sv/jspui/bitstream/10972/1973/1/4-nuevos-retos-para-el-ingeniero-en-el-siglo-xxi.pdf
Panza, M. (2000). Newton et les origines de l’analyse : 1664-1666. Sciences de l’Homme et Société. Ecole des Hautes Etudes en Sciences Sociales. https://tel.archives-ouvertes.fr/tel-00116744/file/MsPr.pdf
Panza, M. (2008). Isaac Barrow and the Bounds of Geometry. In Liber Amicorum Jean Dhombres (pp. 354–411). Brepols. https://halrchives-ouvertes.fr/hal-00456290/file/Dhombres_3_.pdf
Pettersson, K., & Scheja, M. (2008). Algorithmic contexts and learning potentiality: A case study of students’ understanding of calculus. International Journal of Mathematical Education in Science and Technology, 39(6), 767–784. https://doi.org/10.1080/00207390801986908
Ponce, J. (2013). Isaac Barrow y su versión geométrica del teorema fundamental del cálculo. Números. Revista de Didáctica de Las Matemáticas.
Ponce, J. (2014). El Teorema Fundamental del Cálculo : estudio sobre algunos conceptos, fórmulas y métodos relacionados con su aplicación (Issue August).
Ponce, J., & Maldonado, M. (2013). The fundamental theorem of calculus within a geometric context based on Barrow’s work. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2013.822586
Price, G. B. (1984). Multivariable Analysis.
Robles, M., Tellechea, E., & Font, V. (2014). Una propuesta de acercamiento alternativo al teorema fundamental del cálculo. Educación Matemática.
Roinila, M. (2012). Gottfried Leibniz. Department of Philosophy, History, Culture and Art Studies, University of Helsinki. https://www.mv.helsinki.fi/home/mroinila/leibniz1.htm
Rosenthal, C. (2016). Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/material/show/id/rhTCnXn6
Rosyidi, A. H., & Kohar, A. W. (2018). Is f(x) unique? Prospective teachers’ conceptual and procedural knowledge on a definite integral problem. Journal of Physics: Conference Series, 1108(1), 0–7. https://doi.org/10.1088/1742-6596/1108/1/012095
Schipp, F., & Wade, W. R. (1989). A fundamental theorem of dyadic calculus for the unit square. Applicable Analysis, 34(3–4), 203–218. https://doi.org/10.1080/00036818908839895
Schwartz, K. (2015). Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/BgnFNMVP
Scriba, C. (2014). Method The Inverse of Tangents : A Dialogue between Leibniz and Newton (1675- 1677). In Archive for History of Exact Sciences (Vol. 2, Issue 2, pp. 113–137).
Serna, E. M., & Serna, A. A. (2015). Crisis de la Ingeniería en Colombia-Estado de la cuestión Crisis of Engineering in Colombia-State of the art. Ingeniería Y Competitividad, 17(1), 63–74.
Serrin, J. (1959). On a fundamental theorem of the calculus of variations. Acta Mathematica, 102(1–2), 1–22. https://doi.org/10.1007/BF02559565
Sobczyk, G., & Sanchez, O. (2008). Fundamental Theorem of Calculus. Advances in Applied Clifford Algebras, 21, 221–231. https://arxiv.org/pdf/0809.4526.pdf
Stoll, A. (1993). Comment l’histoire des mathematiques peut nous devoiler une approche possible du calcul integral. Le Portail Des IREM. http://www.univ-irem.fr/exemple/reperes/articles/11_article_71.pdf
Struik, D. J. (1969). A Source Book in Mathematics, 1200-1800-Princeton University Press (2014).
Swartz, C., & Thomson, B. (2015). Theorem More on the Fundamental. Mathematical Association of America, 95(7), 644–648.
Takači, D., Stankov, G., & Milanovic, I. (2015). Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computers and Education, 82, 421–431. https://doi.org/10.1016/j.compedu.2014.12.002
Tall, D. (1991). Intuition and rigour: the role of visualization in the calculus. Visualization in Mathematics, 19, 105–119.
Teper, A. (2015). The Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/material/show/id/junMk2Ax
Thompson, P. (1994). Images of Rate and Operational Understanding of the Fundamental Theorem of Calculus. Educational Studies in Mathematics, 26, 131. https://doi.org/http://dx.doi.org/10.4236/ojo.2014.48035
Thompson, P., Byerley, C., & Hatfield, N. (2013). A Conceptual Approach to Calculus Made Possible by Technology. Computers in the Schools, 30(1–2), 124–147. https://doi.org/10.1080/07380569.2013.768941
Thompson, P., & Dreyfus, T. (2016). A coherent approach to the fundamental theorem of calculus using differentials. Proceedings of the Conference on Didactics of Mathematics in Higher Education as a Scientific Discipline, August, 355–359. http://pat-thompson.net/PDFversions/2016Thompson-Dreyfus.pdf
Toumasis, C. (1993). What is the fundamental theorem of integral calculus? International Journal of Mathematical Education in Science and Technology, 24(5), 685–687. https://doi.org/10.1080/0020739930240509
Trouche, L. (2005). Les usages des outils de calcul dans l’enseignement des mathématiques. Le Calcul Sous Toutes Ses Formes, 265–276.
Walker, P. (2016). The Fundamental Theorem of Calculus. Geogebra.Org. https://www.geogebra.org/m/Zwgm283d
Zuñiga, F. (2016). 7 habilidades que debe tener un ingeniero para alcanzar el éxito profesional. America Economia. https://mba.americaeconomia.com/articulos/reportajes/7-habilidades-que-debe-tener-un-ingeniero-para-alcanzar-el-exito-profesional
- Resumen visto - 1504 veces
- PDF descargado - 644 veces
- HTML descargado - 500 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Educación, 2021
Afiliaciones
Weimar Muñoz Villate
Universidad Distrital Francisco José de Caldas, Colombia.