Analysis of Fractional Dynamical Systems Using Recursive Bayesian Estimation Methods and Response Data
Issue | Vol. 7 Núm. 2 (2024): Ciencia, Ingenierías y Aplicaciones |
DOI | |
Publicado | dic 31, 2024 |
Estadísticas |
Resumen
The research titled Analysis of fractional dynamical systems using recursive Bayesian estimation methods and response data was presented at the Engineering Mechanics Institute Conference and Probabilistic Mechanics & Reliability Conference (EMI/PMC 2024), University of Illinois Urbana-Champaign, Chicago, IL, May 28-31 2024, as part of the Minisymposium Computational methods for stochastic engineering dynamics.
Erazo, K., and Nagarajaiah, S. (2017). An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering. Journal of Sound and Vibration, 397, 222-240.
Erazo, K., and Nagarajaiah, S. (2018). Bayesian structural identification of a hysteretic negative stiffness earthquake protection system using unscented Kalman filtering. Structural control and health monitoring, 25(9), e2203.
Erazo, K., and Nagarajaiah, S. (2022). Structural Health Monitoring of Civil Infrastructure Using Applied Recursive Bayesian Estimation Methods. In Recent Developments in Structural Health Monitoring and Assessment–Opportunities and Challenges: Bridges, Buildings and Other Infrastructures, 171-195.
Erazo, K., Sen, D., Nagarajaiah, S., and Sun, L. (2019). Vibration-based structural health monitoring under changing environmental conditions using Kalman filtering. Mechanical systems and signal processing, 117, 1-15.
Lei, Y., Xia, D., Erazo, K., and Nagarajaiah, S. (2019). A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems. Mechanical Systems and Signal Processing, 127, 120-135.
- Resumen visto - 0 veces
- PDF descargado - 0 veces
- HTML descargado - 0 veces
- XML descargado - 0 veces
- EPUB descargado - 0 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Science, Engineering and Applications, 2025
Afiliaciones
Kalil Erazo
Department of Engineering, Instituto Tecnológico de Santo Domingo (INTEC), Dominican Republic.
Alberto Di Matteo
Department of Engineering, University of Palermo, Palermo PA, Italy.
Pol D. Spanos
Department of Mechanical Engineering, Rice University, Houston, TX, USA.