Afriyie, J., Twumasi-Ankrah, S., Gyamfi, K., Arthur, D. & Pels, W. (2020). Evaluating the Performance of Unit Root Tests in Single Time Series Processes. Mathematics and Statistics, 8(6), 656-664. https://www.hrpub.org/journals/article_info.php?aid=10231
Agencia Internacional de Energía, IEA. (2022). World Energy Outlook 2022. IEA.
Ahmad, F. & Khan Sherwani, R. (2015). Power comparison of various normality tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331-345.
Arias, M. & Bae, S. (2021). Solar Photovoltaic Power Prediction Using Big Data Tools. Sustainability, 13(24). https://doi.org/10.3390/su132413685
Borunda, M., Ramírez, A., Garduno, R., Ruíz, G., Hernandez, S. & Jaramillo, O. (2022). Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning. Energies, 15(23). https://doi.org/10.3390/en15238895
Bruce, P. & Bruce, A. (2017). Practical Statistics for Data Scientists. O’Reilly Media, Inc.
Cielen, D., Meysman, A. & Ali, M. (2016). Introducing Data Science. Manning Publications Co.
Comunidad global de energías renovables REN21. (2022). Global Status Report 2022. REN21.
Cryer, J. & Chan, K.-S. (2008). Time Series Analysis with Applications in r. Springer Science+Business Media, LLC.
Fan, G.-F., Wei, H.-Z., Chen, M.-Y. & Hong, W.-C. (2022). Photovoltaic Power Generation Forecasting Based on the ARIMA-BPNN-SVR Model. Global Journal of Energy Technology Research Updates, 9, 18-38. https://doi.org/10.15377/2409-5818.2022.09.2
Fara, L., Diaconu, A., Craciunescu, D. & Fara, S. (2021). Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. International Journal of Photoenergy. https://doi.org/10.1155/2021/6777488
Gaikwad, N. & Agravat, S. (2017). On The Development of Solar & Wind Energy Forecasting Application Using ARIMA, ANN and WRF in MATLAB. 11th INDIACom; 2017 4th International Conference on Computing for Sustainable Global Development. Bharati Vidyapeeth’s Institute of Computer Applications and Management.
Hammad, M. A., Jereb, B., Rosi, B. & Dragan, D. (2020). Methods and Models for Electric Load Forecasting: A Comprehensive Review. Logistics, Supply Chain, Sustainability and Global Challenges, 11(1), 51-76. https://doi.org/10.2478/jlst-2020-0004
Haslwanter, T. (2016). An Introduction to Statistics with Python - With Applications in Life Science. Springer International Publishing.
Jung, A. H., Lee, D. H., Kim, J. Y., Kim, C., Kim, H. G. & Lee, Y. S. (2022). Regional Photovoltaic Power Forecasting Using Vector Autoregression Model in South Korea. Energies, 15(21), 7853. https://doi.org/10.3390/en15217853
Kardakos, E., Alexiadis, M., Vagropoulo, S., Simoglou, C., Biskas, P. & Bakirtzis, A. (2013). Application of time series and artificial neural network models in short-term forecasting of PV power generation. 2013 48th International Universities’ Power Engineering Conference (UPEC). IEEE Xplore.
Konstantinou, M., Peratikou, S. & Charalambides, A. (2021). Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere, 12(1), 124. https://doi.org/10.3390/atmos12010124
Larson, D., Nonnenmacher, L. & Coimbra, C. (2016). Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. Renewables Energy, 11-20. http://dx.doi.org/10.1016/j.renene.2016.01.039
Mahan, M., Chorn, C. & Georgopoulos, A. (2015). White Noise Test: detecting autocorrelation and nonstationarities in long time series after ARIMA modeling. Proc. of the 14th Python in Science Conf. (SCIPY 2015).(pp. 97-104). Scipy2015. https://doi.org//10.25080/majora-7b98e3ed-00f
Makridakis, S., Wheelwright, S. & Hyndman, R. (1997). Manual of Forecasting: Methods and Applications.
Mills, T. (2019). Applied Time Series Analysis - A Practical Guide to Modeling and Forecasting. Academic Press - Elsevier.
Navlani, A., Fandango, A. & Idris, I. (2021). Python Data Analysis. Packt Publishing Ltd.
PVDAQ NREL. (15 de febrero de 2023). Duramat. https://datahub.duramat.org/dataset/pvdaq-time-series-with-soiling-signal
Samanta, M., Srikanth, B. & Yerrapragada, J. (2014). Short-Term Power Forecasting of Solar PV Systems Using Machine Learning Techniques. Environmental Science, 1-5.
SolarDesignTool. (15 de febrero de 2023). SolarDesignTool. http://www.solardesigntool.com/components/module-panelsolar/Sanyo/2735/HIP200BA3/specification-data-sheet.html
Vanderplas, J. (2017). Python Data Science Handbook - Essential Tools for Working with Data. O’Reilly Media, Inc.
Vyas, S., Goyal, Y., Bhatt, N., Bhuw, S., Patel, H., Mishra, S. & Tripathi, B. (2022). Forecasting Solar Power Generation on the basis of Predictive and Corrective Maintenance Activities. ArXiv - Cornell University.