Detección de baches y su severidad usando el Video VBOX Lite y teléfonos inteligentes
Issue | Vol. 5 Núm. 1 (2022): Ciencia, Ingenierías y Aplicaciones |
DOI | |
Publicado | jun 30, 2022 |
Estadísticas |
Resumen
Los baches son un problema común en pavimentos deteriorados. Estos desniveles disminuyen la comodidad de conducción y pueden llegar a causar siniestros viales. El geolocalizar los baches y su grado severidad permitirán a los usuarios ajustar su velocidad y trayectoria en la vía deteriorada. Además, las entidades del Estado pueden planificar las intervenciones de mantenimiento en los sitios con más deterioro. Esto se podría resolver utilizando sensores como los que tienen los teléfonos celulares o el Video VBOX Lite, que tiene mayor precisión. La información recolectada por estos equipos por sí sola, no permite la geolocalización del bache o determinar su severidad; es necesario entender, procesar y evaluar esos datos para lograrlo. Por lo tanto, el objetivo de este estudio es proponer un procedimiento para detectar baches y su severidad usando el Video VBOX Lite y dos teléfonos inteligentes. Para ello, la recolección de datos se hizo en dos fases. En la fase 1, se recolectaron los baches de manera manual (posición, profundidad y diámetro). Mientras que en la fase 2 se recolectaron los datos de los sensores de los equipos colocados en un vehículo liviano. Se circuló a velocidades entre 20 a 50 km/h. Basado en estos datos, se propuso dos procedimientos uno para el Video VBOX Lite y otro para los teléfonos celulares. La precisión de los procedimientos llegó a detectar entre 71-90 % de los baches. Este procedimiento se puede adaptar como crowdsourcing para generar datos de las redes viales locales.
Anand, A., Gawande, R., Jadhav, P., Shahapurkar, R., Devi, A., & Kumar, N. (2020). Intelligent Vehicle Speed Controlling and Pothole Detection System. E3S Web of Conferences, 170. https://doi.org/10.1051/E3SCONF/202017002010
Arjapure, S., & Kalbande, D. R. (2020). Review on Analysis Techniques for Road Pothole Detection. Advances in Intelligent Systems and Computing, 1053, 1189–1197. https://doi.org/10.1007/978-981-15-0751-9_109
Arulananth, T. S., Baskar, M., Thrishma, K., Srilekha, N., supraja, S., & Ravalika, C. (2022). Pothole Detection Using Arduino and Ultrasonic Sensors. Lecture Notes in Networks and Systems, 292, 435–442. https://doi.org/10.1007/978-981-16-4435-1_42
Ashwini, K. S., Bhagwat, G., Sharma, T., & Pagala, P. S. (2020, July 1). Trigger-Based Pothole Detection Using Smartphone and OBD-II. Proceedings of CONECCT 2020 - 6th IEEE International Conference on Electronics, Computing and Communication Technologies. https://doi.org/10.1109/CONECCT50063.2020.9198602
Aswath, M., Raj, S. J., & Mohanaprasad, K. (2022). Real-Time Pothole Detection with Onboard Sensors and Camera on Vehicles. Lecture Notes in Electrical Engineering, 792, 479–488. https://doi.org/10. 1007/978-981-16-4625-6_47
Bangalore Ramaiah, N. K., & Kundu, S. (2021). Stereo Vision Based Pothole Detection System for Improved Ride Quality. SAE Technical Papers, 2021. https://doi.org/10.4271/2021-01-0085
Becker, Y. V. F., Siqueira, H. L., Matsubara, E. T., Gonçalves, W. N., & Marcato, J. (2019). Asphalt pothole detection in uav images using convolutional neural networks. International Geoscience and Remote Sensing Symposium (IGARSS), 2019-July, 56–58. https://doi.org/ 10.1109/IGARSS.2019.8900621
Bhavya, P., Sharmila, C., Sai Sadhvi, Y., Prasanna, C. M. L., & Ganesan, V. (2021). Pothole Detection Using Deep Learning. Lecture Notes in Networks and Systems, 210 LNNS, 233–243. https://doi.org/10. 1007/978-981-16-1773-7_19
Bridgelall, R., & Tolliver, D. (2020). Accuracy enhancement of anomaly localization with participatory sensing vehicles. Sensors (Switzerland), 20(2). https://doi.org/10.3390/S20020409
Camilleri, N., & Gatt, T. (2020). Detecting road potholes using computer vision techniques. Proceedings - 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing, ICCP 2020, 343–350. https://doi.org/10.1109/IC CP51029.2020.9266138
Chen, H., Yao, M., & Gu, Q. (2020). Pothole detection using location-aware convolutional neural networks. International Journal of Machine Learning and Cybernetics, 11(4), 899–911. https://doi.org/10.1007/S13042-020-01078-7
Du, Z., Yuan, J., Xiao, F., & Hettiarachchi, C. (2021). Application of image technology on pavement distress detection: A review. Measurement: Journal of the International Measurement Confederation, 184. https://doi.org/10.1016/J.MEASUREMENT.2021.109900
Egaji, O. A., Evans, G., Griffiths, M. G., & Islas, G. (2021). Real-time machine learning-based approach for pothole detection. Expert Systems with Applications, 184. https://doi.org/10.1016/J.ESWA.2021.115562
Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., & Balakrishnan, H. (2008). The pothole patrol: using a mobile sensor network for road surface monitoring. 6th International Conference on Mobile Systems, Applications, and Services, 29–39. https://doi.org/10.1145/1378600.1378605
Fan, R., Ozgunalp, U., Hosking, B., Liu, M., & Pitas, I. (2020). Pothole Detection Based on Disparity Transformation and Road Surface Modeling. IEEE Transactions on Image Processing, 29, 897–908. https://doi.org/10.1109/TIP.2019.2933750
Fan, R., Ozgunalp, U., Wang, Y., Liu, M., & Pitas, I. (2021). Rethinking Road Surface 3-D Reconstruction and Pothole Detection: From Perspective Transformation to Disparity Map Segmentation. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB. 2021. 3060461
Fan, R., Wang, H., Wang, Y., Liu, M., & Pitas, I. (2021). Graph Attention Layer Evolves Semantic Segmentation for Road Pothole Detection: A Benchmark and Algorithms. IEEE Transactions on Image Processing, 30, 8144–8154. https://doi.org/10.1109/TIP.2021.3112316
Ganesh Babu, R., Chellaswamy, C., Surya Bhupal Rao, M., Saravanan, M., Kanchana, E., & Shalini, J. (2020, July 1). Deep learning based pothole detection and reporting system. 2020 7th International Conference on Smart Structures and Systems, ICSSS 2020. https://doi.org/10.1109/ICSSS49621.2020.9202061
Gupta, D., Xu, W., Yu, X., & Huang, M. C. (2021). Campus safety and the internet of wearable things: Assessing student safety conditions on campus while riding a smart scooter. 2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks, BSN 2021. https://doi.org/10.1109/BSN51625.2021.9507033
Gupta, S., Sharma, P., Sharma, D., Gupta, V., & Sambyal, N. (2020). Detection and localization of potholes in thermal images using deep neural networks. Multimedia Tools and Applications. https://doi.org/10.1007/S11042-020-09293-8
Han, Y., Kim, S. J., Lee, D. W., Park, J. H., Lee, S. W., & Seo, D. (2020). Development of a pothole detection result management system in road aerial images. JP Journal of Heat and Mass Transfer, 2020(Special Issue 1), 77–81. https://doi.org/10.17654/HMSI120077
Harikrishnan, P. M., & Gopi, V. P. (2017). Vehicle Vibration Signal Processing for Road Surface Monitoring. IEEE Sensors Journal, 17(16), 5192–5197. https://doi.org/10.1109/JSEN.2017.2719865
Hiremath, R., Malshikare, K., Mahajan, M., & Kulkarni, R. V. (2021). A Smart App for Pothole Detection Using Yolo Model. Lecture Notes in Networks and Systems, 154, 155–164. https://doi.org/10.1007/978-981-15-8354-4_16
Hu, Y., & Furukawa, T. (2020). Degenerate near-planar 3D reconstruction from two overlapped images for road defects detection. Sensors (Switzerland), 20(6). https://doi.org/10.3390/S20061640
Javed, A., Mahmud, M. S., Alam, M. T., Ohab, M. F. Bin, Ali, K. R., Jobaer, A. Al, & Monir Uddin, M. (2021). Pothole Detection System Using Region-Based Convolutional Neural Network. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology, CCET 2021, 6–11. https://doi.org/10.1109/ CCET52649.2021.9544396
Kandoi, A., Agarwal, H., Revadekar, A., & Chaudhari, B. N. (2021). Pothole detection using accelerometer and computer vision with automated complaint redressal. 2021 3rd International Conference on Signal Processing and Communication, ICPSC 2021, 257–264. https://doi.org/10.1109/ICSPC51351.2021.9451762
Kempaiah, B. U., Mampilli, R. J., & Goutham, K. S. (2022). A Deep Learning Approach for Speed Bump and Pothole Detection Using Sensor Data. Lecture Notes in Electrical Engineering, 73–85. https://doi.org/10.1007/978-981-16-1338-8_7
Kharel, S., & Ahmed, K. R. (2022). Potholes Detection Using Deep Learning and Area Estimation Using Image Processing. Lecture Notes in Networks and Systems, 296, 373–388. https://doi.org/10.1007/978-3-030-82199-9_24
Kotha, M., Chadalavada, M., Karuturi, S. H., & Venkataraman, H. (2020, January 11). PotSense - Pothole detection on Indian roads using smartphone sensors. PervasiveHealth: Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3377283.3377286
Kumar, A., Chakrapani, Kalita, D. J., & Singh, V. P. (2020, February 1). A modern pothole detection technique using deep learning. 2nd International Conference on Data, Engineering and Applications, IDEA 2020. https://doi.org/10.1109/IDEA49133.2020.9170705
Kyriakou, C., Christodoulou, S. E., & Dimitriou, L. (2019). Smartphone-Based Pothole Detection Utilizing Artificial Neural Networks. Journal of Infrastructure Systems, 25(3), 04019019. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000489
Lekshmipathy, J., Velayudhan, S., & Mathew, S. (2021). Effect of combining algorithms in smartphone based pothole detection. International Journal of Pavement Research and Technology, 14(1), 63–72. https://doi.org/10.1007/S42947-020-0033-0
Li, R., & Liu, C. (2021). Road Damage Evaluation via Stereo Camera and Deep Learning Neural Network. IEEE Aerospace Conference Proceedings, 2021-March. https://doi.org/10.1109/AERO50100. 2021.9438528
Lopes, T. R. L., Dias, L. P. S., Da Costa, C. A., De Nardin, I. F., & Da Rosa Righi, R. (2020). Collaborative humanless model for automatic pothole detection and driver notification. International Journal of Computational Science and Engineering, 22(2–3), 280–296. https://doi.org/10.1504/IJCSE.2020.107350
Mamatha, G., Sharan, H. S., Prathik, R., Priya, D. S., & Prajwal, U. (2020). Smart vehicular communication for road status analysis and vehicle trajectory prediction. Proceedings of the 3rd International Conference on Smart Systems and Inventive Technology, ICSSIT 2020, 1081–1087. https://doi.org/10.1109/ICSSIT48917.2020.9214252
Muhammad Hanif, H., Lie, Z. S., Astuti, W., & Tan, S. (2020). Pothole detection system design with proximity sensor to provide motorcycle with warning system and increase road safety driving. IOP Conference Series: Earth and Environmental Science, 426(1). https://doi.org/10.1088/1755-1315/426/1/012039
Park, J. S., Lee, K. S., & Kim, S. (2019). Assessment for a condition using terrestrial lidar data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W8), 311–314. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-3-W8-311-2019
Park, S. S., Tran, V. T., & Lee, D. E. (2021). Application of various yolo models for computer vision-based real-time pothole detection. Applied Sciences (Switzerland), 11(23). https://doi.org/10.3390/APP112311229
Patra, S., Middya, A. I., & Roy, S. (2021). PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning. Multimedia Tools and Applications, 80(16), 25171–25195. https://doi.org/10.1007/S11042-021-10874-4
Pawar, K., Jagtap, S., & Bhoir, S. (2020). Efficient pothole detection using smartphone sensors. International Conference on Automation, Computing and Communication, 32. https://doi.org/10.1051/IT MCONF/20203203013
Pratama, I. D., Mahmudah, H., & Sudibyo, R. W. (2021). Design and Implementation of Real-time Pothole Detection using Convolutional Neural Network for IoT Smart Environment. International Electronics Symposium 2021: Wireless Technologies and Intelligent Systems for Better Human Lives, IES 2021 - Proceedings, 675–679. https://doi.org/10.1109/IES53407.2021.9594038
Pundir, P., Gupta, S., Patel, R. S., Goswami, R., Singh, D., & Kumar, K. (2021). POCONET: A Pathway to Safety. Lecture Notes in Networks and Systems, 175, 299–306. https://doi.org/10.1007/978-3-030-67187-7_31
Rahman, A., Mustafa, R., & Hossain, M. S. (2022). Real-time Pothole Detection and Localization Using Convolutional Neural Network. In Lecture Notes on Data Engineering and Communications Techbologies (pp. 579–592). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-16-6636-0_44
Ravi, R., Bullock, D., & Habib, A. (2020). Highway and airport runway pavement inspection using mobile lidar. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B1), 349–354. https://doi.org/10.5194/ISPRS-ARCHIVES-XLIII-B1-2020-349-2020
Riedl, K., Huber, S., Bomer, M., Kreibich, J., Nobis, F., & Betz, J. (2020, September 10). Importance of Contextual Information for the Detection of Road Damages. 2020 15th International Conference on Ecological Vehicles and Renewable Energies, EVER 2020. https://doi.org/10.1109/EVER48776.2020.9242954
Shah, A., Sharma, G., & Bhargava, L. (2021). Smart implementation of computer vision and machine learning for pothole detection. Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, 65–69. https://doi.org/10.1109/CONFLUENCE51648.2021.9376886
Shahin, M. (2006). Pavement Management for Airports, Roads, and Parking Lots (2nd. ed.). Springer.
Silvister, S., Komandur, D., Kokate, S., Khochare, A., More, U., Musale, V., & Joshi, A. (2019, December 1). Deep Learning Approach to Detect Potholes in Real-Time using Smartphone. 2019 IEEE Pune Section International Conference, PuneCon 2019. https://doi.org/10.1109/PUNECON46936.2019.9105737
Singh, G., Bansal, D., Sofat, S., & Aggarwal, N. (2017). Smart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcing. Pervasive and Mobile Computing, 40, 71–88. https://doi.org/10.1016/J.PMCJ.2017.06.002
Singh, K., Hazra, S., Mukherjee, C., Sushanth, G., & Gowda, S. (2020). Iot based real time potholes detection system using image processing techniques. International Journal of Scientific and Technology Research, 9(2), 785–789.
Srivastava, A., Goyal, A., & Ram, S. S. (2020). Radar cross-section of potholes at automotive radar frequencies. 2020 IEEE International Radar Conference, RADAR 2020, 483–488. https://doi.org/ 10.1109/RADAR42522.2020.9114858
Thakur, M., Sharma, V., & Wavhal, P. (2020). IoT based pothole detection and warning system. International Journal of Advanced Science and Technology, 29(4 Special Issue), 767–770.
Thiruppathiraj, S., Kumar, U., & Buchke, S. (2020). Automatic pothole classification and segmentation using android smartphone sensors and camera images with machine learning techniques. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2020-November, 1386–1391. https://doi.org/10.1109/TENCON 50793.2020.9293883
Tithi, A., Ali, F., & Azrof, S. (2021, July 8). Speed bump & pothole detection with single shot multibox detector algorithm & speed control for autonomous vehicle. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0, ACMI 2021. https://doi.org/10.1109/ACMI53878.2021.9528185
Tsai, J. C., Lai, K. T., Dai, T. C., Su, J. J., Siao, C. Y., & Hsu, Y. C. (2020, November 4). Learning Pothole Detection in Virtual Environment. 2020 International Automatic Control Conference, CACS 2020. https://doi.org/10.1109/CACS50047.2020.9289740
Van Khang, N., & Renault, E. (2019). Cooperative sensing and analysis for a smart pothole detection. 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, 1785–1790. https://doi.org/10.1109/IWCMC.2019.8766600
Vittorio, A., Rosolino, V., Teresa, I., Vittoria, C. M., Vincenzo, P. G., & Francesco, D. M. (2014). Automated Sensing System for Monitoring of Road Surface Quality by Mobile Devices. Procedia - Social and Behavioral Sciences, 111, 242–251. https://doi.org/10.1016/J.SBSPRO.2014.01.057
Wang, L. (2021). Research on Road Pothole Detection Method Based on Computer Image Restoration Technology. Journal of Physics: Conference Series, 1992(3). https://doi.org/10.1088/1742-6596/ 1992/3/032028
Yebes, J. J., Montero, D., & Arriola, I. (2021). Learning to Automatically Catch Potholes in Worldwide Road Scene Images. IEEE Intelligent Transportation Systems Magazine, 13(3), 192–205. https://doi.org/10.1109/MITS.2019.2926370
Yik, Y. K., Alias, N. E., Yusof, Y., & Isaak, S. (2021). A real-time pothole detection based on deep learning approach. Journal of Physics: Conference Series, 1828(1). https://doi.org/10.1088/1742-6596/1828/1/012001
- Resumen visto - 586 veces
- PDF descargado - 264 veces
- HTML descargado - 222 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ingenierías y Aplicaciones, 2022
Afiliaciones
Yasmany García-Ramírez
Universidad Técnica Particular de Loja (UTPL). Loja, Ecuador
Fernando García
Universidad Técnica Particular de Loja (UTPL). Loja, Ecuador
Vicente Quinche
Universidad Técnica Particular de Loja (UTPL). Loja, Ecuador
Wilman Maygua
Universidad Técnica Particular de Loja (UTPL). Loja, Ecuador