La complejidad química de las gasolinas de automoción
Issue | Vol. 2 Núm. 2 (2019): Ciencia, Ingenierías y Aplicaciones |
DOI | |
Publicado | dic 12, 2019 |
Estadísticas |
Resumen
Utilizadas principalmente como combustibles en motores de combustión interna, las gasolinas son mezclas complejas de hidrocarburos que incluyen en su composición distintos aditivos para mejorar su estabilidad y prestaciones. Su composición química es no solo diversa, sino también variable, dependiendo del crudo de procedencia, del proceso de obtención y de las normativas existentes. Estas fijan el contenido máximo permitido de determinados compuestos que, por su toxicidad, deben quedar limitados. Las gasolinas se obtienen por destilación fraccionada del petróleo y también a partir de fracciones más pesadas del mismo, mediante craqueo térmico o catalítico, procesos que junto al reformado catalítico van a tener una incidencia directa en su composición. El objetivo de esta revisión es abordar la compleja composición que presentan las gasolinas, así como algunos procesos básicos del refinado de petróleo. Estos procesos determinan en buena medida la naturaleza química de los componentes de este combustible, algunos de los cuales se relacionan con la emisión de sustancias nocivas para la salud y el medio ambiente. De esta forma, proporcionamos un contexto más exacto sobre los agentes contaminantes de la gasolina, a la vez que ponemos de manifiesto la necesidad de contar con normativas avanzadas que regulen la composición de los combustibles.
Australian Government. (2014). Department of the Environment and Energy. International fuel quality standards and their implications for australian standards. Final report. Hartenergy Research & Consulting. Disponible en https://www.environment.gov.au/system/files/resources/f83ff2dc-87a7-4cf9-ab24-6c25f2713f9e/files/international-feul-quality-standards.pdf [acceso 15 de abril 2019].
Brudzewski, K., Kesik, A., Kołodziejczyk, K., Zborowska, U. & Ulaczyk, J. (2006). Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach, Fuel, 85(4), 553-558.
Curiale, J.A. & Frolov, E.B. (1998). Occurrence and origin of olefins in crude oils. A critical review. Organic Geochemistry, 29, 397-408.
Dhar, G.M., Kumaran, G.M., Kumar, M., Rawat, K.S., Sharma, L.D., Raju, B.D. & Rao, K.S.R. (2005). Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts, Catalysis Today, 99, 309-314.
Demirbas, A., Balubaid, M.A., Basahel, A.M., Ahmad, W. & Sheikh, M.H. (2015). Octane rating of gasoline and octane booster additives. Petroleum Science and Technology, 33, 1190–1197.
Directiva98/70/CE del Parlamento Europeo y del Consejo de 13 de octubre de 1998 relativa a la calidad de la gasolina y el gasóleo y por la que se modifica la Directiva 93/12/CEE del Consejo. Disponible en: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG: 1998L0070:20031120:ES:PDF
Donald, J.M., Hooper, K. & Hopenhayn-Rich, C. (1991). Perspectives reproductive and developmental toxicity of toluene: a review, Environmental Health, 94, 237-244.
Durbin, T.D., Miller, J.W., Younglove, T., Huai, T. & Cocker, K. (2007). Effects of fuel ethanol content and volatility on regulated and unregulated exhaust emissions for the latest technology gasoline vehicles. Environmental Science & Technology, 41, 4059−4064.
Fung, F. (2011). Best Practices for Fuel Quality Inspection Programs. International Council on Clean Transportation. Working paper No. 2011-11, Washington, November, 2011. [acceso 15 de abril 2019]. Disponible en: https://www.theicct.org/sites/default/files/publications/ICCT_fuelqualityBP_nov2011.pdf
Gary, J.H. & Handwerk, G.E. (1980). Refino del petróleo: tecnología y economía. Editorial Reverté. 37-186. Barcelona, España.
Hajbabaei, M., Karavalakis, G., Miller, W.J., Villela, M., Huaying, X.K. & Durbin T.D. (2013). Impact of olefin content of criteria and toxic emissions from modern gasoline vehicles, Fuel, 107, 671−679.
Harley, R.A., Hooper, D.S., Kean, A.J., Kirchstetter, T.W., Hesson, J.M., Balberan, N.T., Stevenson, E.D. & Kendall, G.R. (2006). Effects of reformulated gasoline and motor vehicle fleet turnover on emissions and ambient concentrations of benzene. Environmental Science & Technology, 40, 5084−5088.
Karavalakis, G., Short, D., Vu, D., Russell, R., Hajbabaei, M., Asa-Awuku, A. & Durbin, T.D. (2015). Evaluating the effects of aromatics content in gasoline on gaseous and particulate matter emissions from SI-PFI and SIDI vehicle. Environmental Science & Technology, 49, 7021-7031.
Khalade, A., Jaakkola, M.S., Pukkala, E. & Jaakkola, J.J.K. (2010). Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environmental Health, 9, (31),1-8. Disponible en: https://ehjournal.biomedcentral.com/track/pdf/ 10.1186/1476-069X-9-31
Kinsara, R.A. & Demirbas, A. (2016). Upgrading of crude oil via distillation processes. Petroleum Science and Technology, 34(14), 1300-1306.
Kirchstetter, T.W., Singer, B., Harley, R.A., Kendalland, G.R. & Traverse, M. (1999). Impact of California reformulated gasoline on motor vehicle emissions. 1. Mass emission rates. Environmental Science & Technology, 33, 318-328.
Lee, D.M., Lee, D.H. & Hwang, I.H. (2018). Gasoline quality assessment using fast gas chromatography and partial least-squares regression for the detection of adulterated gasoline, Energy Fuels, 32(10), 10556–10562.
Li, S., Zhang, Q., Sun, X., Fan, Q. & Chen, J. (2007). Distillation yields and properties from blending crude oils: Maxila and cabinda crude oils, maxila and daqing crude oils, Energy Fuels, 21, 1145–1150.
Mengual. J. (2009). Craqueo térmico y catalítico, con y sin vapor de agua, de alcanos sobre zeolitas. Cinética, desactivación y estabilización del catalizador, (tesis doctoral). Universitat de Valencia, Valencia, España. Disponible en: tdx.cat/bitstream/handle/10803/31944/mengual.pdf?sequence=1
Nabgan, W., Rashidzadeh, M. & Nabgan, B. (2018). The catalytic naphtha reforming process: hydrodesulfurization, catalysts and zeoforming, Environmental Chemistry Letters, 16, 507–522.
Orr, W.L. & Damste, J. S. S. (1990). Geochemistry of sulfur in petroleum systems, En W. L. Orr and C. M. White (ed.), Geochemistry of sulfur in fossil fuels. American Chemical Society, Washington, D.C, p. 2-29.
Palencia, F.D., Folgeras, M.B. & Gómez, F. (2014). Influencia de los aditivos oxigenados sobre las propiedades de las gasolinas. Universidad de Oviedo, Master Universitario en Ingeniería Energética España. Disponible en: http://digibuo.uniovi.es/dspace/bitstream/10651/27919/3/TFMFranciscoDanielPalenciaProteg.pdf
Perdih, A. & Perdih, F. (2006). Chemical interpretation of octane number. Acta Chimica Slovenica. 53, 306–315.
Pradelle, F., Braga, S.L., Martins, A.R.F.A., Turkovics, F. & Pradelle, R.N.C. (2015). Gum Formation in Gasoline and Its Blends: A Review. Energy Fuels, 29, 7753–7770.
Ramadhan, O.M. & Al-Hyali, E.A. (1999). New experimental and theoretical relation to determine the research octane number (RON) of authentic aromatic hydrocarbons could be present in the gasoline fraction. Petroleum Science and Technology, 17, 623-635.
Re-Poppi, N., Alemeida, F.F.P., Cardoso, C.A.L., Raposo Jr, J.L., Viana, L.H. & Silva, T.Q. (2009). Screening analysis of type C Brazilian gasoline by gas chromatography-Flame ionization detector. Fuel, 88, 418-423.
Ritter, S. What’s that stuff? Gasoline. (2005). Chemical & Engineering News, 83(8), 37.
Rodríguez, N. (2012). Análisis de la reducción del azufre en el combustible diesel en El Salvador, Guatemala, Honduras y Nicaragua. Ministerio Federal de Cooperación Económica y desarrollo (Alemania); Comisión Económica para América Latina y el Caribe (CEPAL). Disponible en: https://repositorio.cepal.org/handle/11362/26095
Sadrameli, S.M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115.
Salimi, A., Vaghar-Moussavi, M., Seydi, E. & Pourahmad, J. (2016). Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. Environmental Science and Pollution Research, 23, 8556-8564.
Schifter, I., Díaz, L., Gonzalez, U. & González-Macias, C. (2013). Fuel formulation for recent model light duty vehicles in Mexico base on a model for predicting gasoline emissions. Fuel, 107, 371−381.
Schobert, H.H. (1990). The Chemistry of Hydrocarbon Fuels (1st ed.). Londres, Inglaterra: Butterworth & Co (Publishers), 58-63, 184-196, 211-246.
Songolzadeh, M., Soleimani, M. & Behnood, R. (2013). A brief review of methyl tert-butyl ether (MTBE) removal from contaminated air and water. Research Journal Chemistry Environment, 17, 90-97.
Swick, D., Jaques, A., Walker, J.C. & Estreicher, H. (2014). Gasoline risk management: A compendium of regulations, standards, and industry practices. Regulatory Toxicology and Pharmacology, 70, 80−92.
Trapp, S., Yu, X. & Mosbaek, X. H. (2003). Persistence of methyl tertiary butyl ether (MTBE) against metabolism by danish vegetation. Environmental Science and Pollution Research, 10, 357-360.
United States Environmental Protection Agency (US-EPA). (2017). Health Effects of Ozone in the General Population. Disponible en: https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population
United States Environmental Protection Agency (US-EPA). (2008). AP 42, (5th Edition), Volume I. Chapter 5: Petroleum Industry, Transportation and marketing of Petroleum Liquids. Disponible en: www.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf
Vempatapu, B.P. & Kanaujia, P.K. (2017). Monitoring petroleum fuel adulteration: A review of analytical methods, Trends in Analytical Chemistry, 92, 1-11.
Verma, DK., des Tombe, K. (2002). Benzene in gasoline and crude oil: occupational and environmental implications. AIHA Journal. 63, 225-230.
Vogt, E.T.C., Weckhuysen, B. M (2015). Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 44, 7342-7370.
Von Euler, M., Phama, M.T., Hillefors, Mi., Börje, B., Henriksson, B. & Von Euler, G. (2000). Inhalation of low concentrations of toluene induces persistent effects on a learning retention task, beam-walk performance, and cerebrocortical size in the rat. Experimental Neurology, 163, 1-8.
Wheals, A. E., Basso, L. C., Alves, D. M. G. & Amorim. H.V. (1999). Fuel ethanol after 25 years. Trends in Biothecnology, 17, 482-487.
Wiedemann, L.S.M., d´Avila, L.A. & Azevedo, D. A. (2005). Brazilian gasoline quality: Study of adulteration by statistical and gas chromatography. Journal of the Brazilian Chemical Society, 16(2), 139-146.
World Wide Fuel Charter. (2013). European Automobile Manufacturers Association (ACEA) & Alliance of Automobile Manufacturers, Truck and Engine Manufacturers Association (EMA) & Japan Automobile Manufacturers Association (JAMA). (5th Edition). Disponible en: https://www.acea.be/uploads/publications/Worldwide_Fuel_Charter_5ed_2013.pdf
Yang, M., Kim, S. H., Kim, J. C., Shin, T. & Moon, C. (2010). Toluene induces depression-like behaviors in adult mice. Toxicological Research, 26, 315-320.
Yao, Y. C. & Tsai, J. H. (2013). Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle. Environmental Technology, 34, 2531-2539.
Yardley-Jones, A., Anderson, D. & Parke, D. V. (1991). The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. The British Journal of Industrial Medicine, 48, 437-444.
- Resumen visto - 1396 veces
- PDF descargado - 634 veces
- HTML descargado - 10561 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ingenierías y Aplicaciones, 2019
Afiliaciones
Carlos José Boluda
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Mariana Macías
Instituto Politécnico Nacional, México
Joaquín González Marrero
Instituto Politécnico Nacional, México