Análisis de tendencias climáticas basado en metadatos de estaciones de la red de medición de la Oficina Nacional de Meteorología (ONAMET) de la República Dominicana
Issue | Vol. 39 Núm. 1 (2014): Ciencia y Sociedad |
DOI | |
Publicado | mar 1, 2014 |
Estadísticas |
Resumen
La recolección y el estudio de metadatos constituyen un aspecto fundamental del análisis de series históricas de variables meteorológicas. Los resultados obtenidos para la estación de levantamiento de Santo Domingo, perteneciente a la red de medición de la Oficina Nacional de Meteorología (ONAMET), evidencia que es necesario mejorar la recolección y organización de metadatos asociados a las diferentes asociados. Las informaciones y datos identificados resultan coherentes con el análisis estadístico-numérico realizado, permitiendo estimar para las series termopluviométricas de Santo Domingo las siguientes tendencias: 6.8+/-3.5mm/año de los acumulados de precipitación anual en el periodo 1939-2007; +3.0+/-0.5°C y +1.8+/-0.4°C respectivamente de la temperatura mínima y máxima promedio anuales en el periodo 1936-2007.
Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press.
Auer, I., Böhm, R., Jurkovic, A., Orlik, A., Potzmann, R., Schóner, W., Ungersbóck, M. et al. (2005). A new instrumental precipitation dataset for the greater Alpine region for the period 1800-2002. International] journal of Climatology, 25,139-166.
Barnett, T. P., Hasselmann, K., Chelliah, M., Delworth, T., Hegerl, G., Jones, P. D. (1999). Detectíon and attribution of recent climate change: A status report. Bulletin of the American Meteorological Society, 80(12), 2631-2659.
Barnola, J.-M., Raynaud, D., Lorius, C., Barkov, N. I. (2003). Historical CO2 record from the Vostok ice core. In Trends: A compendium of data on global change. Tennessee: Carbón Dioxide Information Analysis Center, Oak Ridge National Laboratory.
Barriendos, M., Martín-Vide, J., Peña, J. C., Rodríguez, R. (2002). Daily meteorological observations in Cádiz — San Fernando: Analysis of the documentary sources and the instrumental data content (1786-1996). Climatic Change, 53, 151-170.
Beaulieu, C., Seidou, O., Ouarda, T. B. M., Zhang, X. (2009). Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models. Water Resources Research, 45, 8410-8422.
Bhöm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., Schoner, W. (2001). Regional temperature variability in the European Alps 1760-1998 from homogenized instrumental time series. International Journal of Climatology, 21, 1779-1801.
Bradley, N. L., Leopold, A. C., Ross, J., Huffaker, W. (1999). Phenological changes reflect climate changes in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9701-9704.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F., Jones, P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal of Geophisical Keserach, 111, 12106.
Brunetti, M., Maugeri, M., Nanni, T. (2000). Variations of temperature and precipitation in Italy from 1866 to 1995. Theoretical and Applied Climatology, 65, 165-174.
Brunetti, M., Buffoni, L., Fassina, A., Iafrate, L., Lentini, G., Mangianti, F. (2002). Acquisizione, esame critico ed analisi di serie storiche italiane per lo studio delle variazioni del chma. In Progetto CLIMAGRI, Relazione Tecnico-Scientifica (2 anno). Recuperado de http://climagri.entecra.it/9D2C 5095-06B3-4716-9DC0-B425E8EFAEE9 / FinalDownload/ DownloadId-CBF6ADEDAC3F2177465675EC22168C4C/ 9D2C5095-06B3-4716-9DC0-B425E8EFAEE9/relazioni Finali/2anno/Maugeri_relazione2anno.pdf
Buffoni, L., Maugeri, M., Nanni, T. (1999). Precipitation in Italy from 1833 to 1996. Theoretical and Applied Climatology, 63, 33-40.
Camuffo, D., Cocheo, C., Sturaro, G. (2006). Corrections of systematíc errors, data homogenisation and climatic analysis of the Padova pressure series (1725-1999). Climate Change, 78, 493-514.
Costa, A. C., & Soares, A. (2009). Homogenisation of climate data: Review and new perspectives using geostatistics. Mathematical Geosciences, 41(3), 291-305.
Convención Marco de las Naciones Unidas sobre Cambio Climático. (2004). Santo Domingo. Secretaría de Estado de Medio Ambiente y Recursos Naturales.
Convención Marco de las Naciones Unidas sobre Cambio Climático- Proyecto de Cambio Climático de la República Dominicana. (2009). Santo Domingo: Secretaría de Medioambiente y Recursos Naturales y Programa de las Naciones Unidas para el Desarrollo.
Crowley, T. J., & Lowery, T. (2000). How warm was the Medieval Warm Period? A comment on “man-made” versus natural climate change. Atmospheric Biology, 29, 51-54.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge: Cambridge University Press.
Development Core Team. (2010). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing. Recuperado de http://www.R-project.org/
Domonkos, P., & Stepánek, P. (2009). Statistical characteristics of detectable inhomogeneities in observed meteorological time series. Studia Geophysica et Geodaetica, 53, 239-260.
Easterling, D. R., & Peterson, T. C. (1995). A new method for detecting undocumented discontinuities in climatological time series. International Journal of Climatology, 15, 369-377.
Hansen, J., & Lebedeff, S. (1987). Global trends of measured surface air temperature. Journal of Geophysical Research, 92, 13345-13372.
Hansen, J., & Lebedeff, S. (1988). Global surface air temperatures: Update through 1987. Geophysical Research Letters, 15, 323-326.
Hastie, T., Tibshirani, R., Friedman, J. (2009). Hierarchical clustering. In The elements of statistical learning (2nd Ed.). New York: Springer Verlag.
Honaker, J., King, G., Blackwell, M. (2009). AMELIA II: A Pro- gram for Missing Data. Recuperado de http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.168.2012&rep= repl&type=pdf.
Izzo, M. (2011). Analisi del clima e delle dinamiche climatiche nella Repubblica Dominicana e delle relative influenze sul territorio. (Tesis doctoral). Universitá degli Studi del Molise, Italia.
Jones, P. D., Wigley, T. M. L., Wnght, P. B. (1986a). Global temperature variations between 1861 and 1984. Nature, 322, 430-434.
Jones, P. D., Raper, S. C., Bradley, R. S., Díaz, H. F., Kelly, P. M., Wigley, T. M. L. (1986b). Northern Hemisphere surface air temperature variations, 1851-1984. Journal of Climate and Applied Meteorology, 25,161-179.
Jones, P. D., Raper, S. C. B., Wigley, T. M. L. (1986c). Southern Hemisphere surface temperature variations: 1851-1984. Journal of Climate and Applied Meteorology, 25,1213-1230.
Jones, P. D. (1988). Hemispheric surface air temperature variations: Recent trends and an update to 1987. Journal of Climate, 1, 654-600.
Jones, P. D., & Briffa, K. R. (1992). Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details. The Holocene, 2, 174-188.
Jones, P. D., & Briffa, K. R. (1996). Decadal-to-century timescale variability of regional and hemispheric-scale temperature. En The natural variability of the climate system on 10-100 year timescales. En D. Martánson, K. Bryan, M. Ghil, M. Hall, T. R. Karl, E. S. Sarachik, S. Sorooshian, L. D. Talley. (Eds.). Washington D.C.: Academic Press.
Kelly, P. M., & Wigley, T. M. L. (1992). Solar cycle length, greenhouse forcing and global climate. Nature, 360, 328-330.
Labeyrie, L., Skinner, L., Cortijo, E. (2007). Sub-Milankovitch (DO/Heinrich) events. In Paleoclimate reconstruction (s.n.), 1964-1974.
Mann, M. E., Bradley, R. S., Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779-787.
Mann, M. E., & Jones, P. D. (2003). 2,000 year hemispheric multi-proxy temperature reconstructions. En IGBPPAGES/ World Data Center for Paleoclimatology Data Contribution Series, 51. [NOAA/NGDC Paleoclimatology Program, BoulderJ.
Maugeri, M., Brunetti, M., Buffoni, L., Lentini, G., Mangianti, F., Monti, F. (2006). Esame critico e omogeneizzazione delle serie storiche secolari italiane di dati meteorologici e analisi delle tendenze nei dati barometrici. En G. C. Cortemiglia. (Ed.). La variabilitá del clima lócale relazionata ai fenomeni di cambiamento climático globale (11-80). Bologna: Patrón.
Naciones Unidas. (1992). United Nations Framework Convention on Climate Change. Rio de Janeiro: Naciones Unidas.
Nanni, T. (2002). Metodi per la valutazione dell´omogeneitá e per l´estrazione di segnali da serie storiche di dati meteorologici. Recuperado de http://climagri.entecra.it/9D2C5095-06B3- 47169DC0B425E8EFAEE9/FinalDownload/DownloadIdACE800BB24FE0350E07200759396ACDA/9D2C50 95-06B3-4716-9DC0-B425E8EFAEE9 / relazioniFinali/2anno/Maugeri_relazione2anno. pdf
Parish, E., Ganguly, A. R., Steinhaeuser, K. (2008). Climate change in the Dominican Republic. (Technical Manual). Tennessee: Oak Ridge National Laboratory.
Parker, D. E., Jones, P. D., Folland, C. K., Bevan, A. (1994). Interdecadal changes of surface temperature since the late 19th century. Journal of Geophysical Research, 99(D7), 14373- 14399.
Reeves, J., Chen, J., Wang, X. L., Lund, R., Lu, Q. (2007). A review and comparison of changepoint detection techniques for climate data. Journal of Applied Meteorólogy and Climatology, 46, 900-915.
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353-357.
Royal Society. (2010). Climate change: a summary of the science. London: The Royal Society.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-590.
Rubin, D. B. (1987). Múltiple imputation for nonresponse in surveys. New York: John Wiley & Sons.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, Fl. L. (Eds.). (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group. I to the Tourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Wang, X. L. (2003). Comments on detection of undocumented change points: A revision of the two-phase regression model. Journal of Climate, 16, 3383-3385.
Wang, X. L., Wen, Q. H., Wu, Y. (2007). Penalized maximal t test for detecting undocumented mean change in climate data series. Journal of Applied Meteorology and Climatology, 46(6), 916-931.
Wang, X. L. (2008a). Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. Journal of Applied Meteorology and Climatology, 47, 2423-2444.
Wang, X. L. (2008b). Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. Journal of Atmospheric and Oceanic Technology, 25(3), 368-384.
Wang, X. L. (2009). A quantile matching adjustment algorithm for Gaussian data series, Climate Research División. (Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada). Recuperado de http://cccma.seos.uvic.ca/ETCCDMI/software, shtml.
Wang, X. L., Chen, H., Wu, Y., Pu, Q. (2010). New techniques for detection and adjustment of shifts in daily precipitation data series. Recuperado de http://cccma.seos.uvic.ca/ ETCCDMI/RHtest/transformTPRs.pdf
Wijngaard, J. B., Klein Tank, A. M. G., Konnen, G. P. (2003). Homogeneity of 20th century european daily temperature and precipitation series. International Journal of Climatology, 23, 679-692.
Zveryaev, I. I., & Chu, P. S. (2003). Recent climate changes in precipitable water in the global tropics as revealed in National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis. Journal of Geophysical Research. 108,4311-4320.
- Resumen visto - 246 veces
- PDF descargado - 144 veces
- HTML descargado - 282 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Sociedad, 2017
Afiliaciones
Michela Izzo
Guakia Ambiente, Santo Domingo
María Ozoria Zarzuela
Instituto Tecnológico de Santo Domingo (INTEC)