Falacias estadísticas en investigación psicológica y cómo enseñar la sabiduría podría ayudar
Issue | Vol. 7 Núm. 2 (2023): Ciencia y Educación |
DOI | |
Publicado | jun 21, 2023 |
Estadísticas |
Resumen
El propósito principal de este artículo es defender la posición de que algunas falacias alrededor de la aplicación de la estrategia frecuentista, representada por la tradición de la prueba estadística de hipótesis nula, han sido confundidas con las soluciones sustantivas en la investigación. Por otro lado, se intenta ilustrar cómo esta confusión incide en la crisis de la replicación (Costello & Watts, 2022) y, además, exponer cómo un investigador, dada sus propias limitaciones, debe enfrentar los retos que representan todas las estrategias estadísticas que están a su alcance. Se advierte sobre la alta probabilidad de que estas estrategias estén sujetas a la avaricia cognoscitiva que caracteriza a los seres humanos. Finalmente, la enseñanza de la sabiduría se ofrece como una alternativa para reducir dichos sesgos.
Alhosseini, F. & Ferrari, M. (2019). Effects of Causal Attribution and Implicit Mind-Set on Wisdom Development. International Journal of Aging & Human Development, 90(4), 319-336. https://doi.org/10.1177/0091415019836098
Anderson, J. L. (1998). Embracing Uncertainty: The Interface of Bayesian Statistics and Cognitive Psychology. Conservation Ecology, 2(1), 2. https://doi.org/10.5751/es-00043-020102
APA Publications and Communications Board Working Group on Journal Article Reporting Standards. (2008). Reporting standards for research in psychology: Why do we need them? What might they be? [Review of Reporting standards for research in psychology: Why do we need them? What might they be? by A. P. and C. B. W. G. on J. A. R. Standards]. American Psychologist, 63(9), 839-851. https://doi.org/10.1037/0003-066x.63.9.839
Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M. & Rao, S. M. (2018). Journal Article Reporting Standards for Quantitative Research in Psychology: The APA Publications and Communications Board Task Force Report. American Psychologist, 73(1), 3-25. https://doi.org/10.1037/amp0000389
Austin, P. C., Brunner, L. J. & Hux, J. E. (2002). Bayeswatch: an overview of Bayesian statistics: An introduction to Bayesian statistics. Journal of Evaluation in Clinical Practice, 8(2), 277-286. https://doi.org/10.1046/j.1365-2753.2002.00338.x
Badenes-Ribera, L., Frias-Navarro, D., Iotti, B., Bonilla-Campos, A. & Longobardi, C. (2016). Misconceptions of the p-value among Chilean and Italian Academic Psychologists. Frontiers in Psychology, 7, 1247. https://doi.org/10.3389/fpsyg.2016.01247
Badenes-Ribera, L., Frías-Navarro, D., MonterdeI-Bort, H. & Pascual-Soler, M. (2015). Interpretation of the p value: A national survey study in academic psychologists from spain. Psicothema, 27(3), 290-295. https://doi.org/10.7334/psicothema2014.283
Baltes, P. B. & Smith, J. (2008). The Fascination of Wisdom: Its Nature, Ontogeny, and Function. Perspectives on Psychological Science, 3(1), 56-64. https://doi.org/10.1111/j.1745-6916.2008.00062.x
Bartoš, F., Maier, M., Wagenmakers, E.-J., Nippold, F., Doucouliagos, H., Ioannidis, J. P. A., Otte, W. M., Sladekova, M., Fanelli, D. & Stanley, T. D. (2022). Footprint of publication selection bias on meta-analyses in medicine, economics, and psychology. http://arxiv.org/abs/2208.12334
Beasley, W. H. & Rodgers, J. (2009). Resampling methods. In R. E. Millsap & A. Maydeu-Olivares (Eds.), The SAGE Handbook of Quantitative Methods in Psychology (pp. 362-386). Sage.
Borg, D. N., Barnett, A. G., Caldwell, A. R., White, N. M. & Stewart, I. B. (2023). The bias for statistical significance in sport and exercise medicine. Journal of Science and Medicine in Sport, 26(3), 164-168. https://doi.org/10.1016/j.jsams.2023.03.002
Bowes, S. M., Costello, T. H., Lee, C., McElroy-Heltzel, S., Davis, D. E. & Lilienfeld, S. O. (2021). Stepping Outside the Echo Chamber: Is Intellectual Humility Associated With Less Political Myside Bias? Personality and Social Psychology Bulletin, 48(1), 150-164. https://doi.org/10.1177/0146167221997619
Brienza, J. P., Kung, F. Y. H., Santos, H. C., Bobocel, D. R. & Grossmann, I. (2018). Wisdom, Bias, and Balance: Toward a Process-Sensitive Measurement of Wisdom-Related Cognition. Journal of Personality and Social Psychology, 115(6), 1093-1126. https://doi.org/10.1037/pspp0000171
Carver, R. P. (1978). The case against statistical significance testing. Harvard Educational Review, 48(3), 378-399.
Cassidy, S. A., Dimova, R., Giguère, B., Spence, J. R. & Stanley, D. J. (2019). Failing Grade: 89% of Introduction-to-Psychology Textbooks That Define or Explain Statistical Significance Do So Incorrectly. Advances in Methods and Practices in Psychological Science, 2(3), 233-239. https://doi.org/10.1177/2515245919858072
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997-1003. https://doi.org/10.1037/0003-066x.49.12.997
Cohen, J. (1995). The earth is round (p < .05): Rejoinder. American Psychologist, 50(12), 1103. https://doi.org/10.1037/0003-066x.50.12.1103
Cooper, H. (2020). Reporting quantitative research in psychology: How to meet APA style journal article reporting standards. American Psychological Association.
Costello, F. & Watts, P. (2022). How to Tell When a Result Will Replicate: Significance and Replication in Distributional Null Hypothesis Tests. ArXiv. https://doi.org/10.48550/arxiv.2211.02609
Cumming, G. (2013). The New Statistics. Psychological Science, 25(1), 7-29. https://doi.org/10.1177/0956797613504966
Eden, A. B. & Inan, N. G. (2022). Common Misconceptions and Misunderstandings in Magic Cut-Off for Significance: P-Value. Proceedings of the 4th International Conference on Statistics: Theory and Applications. https://doi.org/10.11159/icsta22.125
Falk, R. & Greenbaum, C. W. (1995). Significance Tests Die Hard: The Amazing Persistence of a Probabilistic Misconception. Theory & Psychology, 5(1), 75-98. https://doi.org/10.1177/0959354395051004
Filippini, T. & Vinceti, S. R. (2022). The role of statistical significance testing in public law and health risk assessment. Journal of Preventive Medicine and Hygiene, 63(1), E161–E165. https://doi.org/10.15167/2421-4248/jpmh2022.63.1.2394
Gigerenzer, G. (1994). Why the distinction between single-event probabilities and frequencies is important for psychology (and vice versa). In G. Wright & P. Ayton (Eds.), Subjective probability (pp. 129–161). John Wiley & Sons.
Gigerenzer, G. (2004). Mindless statistics. Journal of Socio-Economics, 33(5), 587-606. https:// doi.org/10.1016/j.socec.2004.09.033
Gigerenzer, G. (2018). Statistical Rituals: The Replication Delusion and How We Got There. Advances in Methods and Practices in Psychological Science, 1(2), 198-218. https://doi.org/10.1177/2515245918771329
Grossmann, I. (2017a). Wisdom and How to Cultivate It. European Psychologist, 22(4), 233-246. https://doi.org/10.1027/1016-9040/a000302
Grossmann, I. (2017b). Wisdom in Context. Perspectives on Psychological Science, 12(2), 233-257. https://doi.org/10.1177/1745691616672066
Grossmann, I., Dorfman, A. (2019). Wise Reasoning in an Uncertain World. In R. Sternberg, H. Nusbaum & J. Glück, (eds.). Applying Wisdom to Contemporary World Problems (pp. 51-79). Springer International Publishing. https://doi.org/10.1007/978-3-030-20287-3_3
Grossmann, I., Dorfman, A., Oakes, H., Santos, H. C., Vohs, K. D. & Scholer, A. A. (2020). Training for Wisdom: The Distanced-Self-Reflection Diary Method. Psychological Science, 32(3), 381-394. https://doi.org/10.1177/0956797620969170
Grossmann, I., Gerlach, T. M. & Denissen, J. J. A. (2016). Wise Reasoning in the Face of Everyday Life Challenges. Social Psychological and Personality Science, 7, 611-622. https://doi.org/10.1177/1948550616652206
Grossmann, I., Weststrate, N. M., Ardelt, M., Brienza, J. P., Dong, M., Ferrari, M., Fournier, M. A., Hu, C. S., Nusbaum, H. C. & Vervaeke, J. (2020). The Science of Wisdom in a Polarized World: Knowns and Unknowns. Psychological Inquiry, 31(2), 103-133. https:// doi.org/10.1080/1047840x.2020.1750917
Grossmann, I., Weststrate, N. M., Ferrari, M. & Brienza, J. P. (2020). A Common Model Is Essential for a Cumulative Science of Wisdom. Psychological Inquiry, 31(2), 185-194. https://doi.org/10.1080/1047840x.2020.1750920
Hammond, K. R. (2007). Beyond Rationality: The Search for Wisdom in a Troubled Time. Oxford University Press.
Hassler, U. (2022). When More Is Less: Pitfalls of significance testing. ArXiv. https://doi.org/10.48550/arxiv.2211.11814
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. (2015). The Extent and Consequences of P-Hacking in Science. PLoS Biology, 13(3), e1002106. https://doi.org/10.1371/journal.pbio.1002106
Hentschke, H. & Stüttgen, M. C. (2011). Computation of measures of effect size for neuroscience data sets. European Journal of Neuroscience, 34(12), 1887-1894. https://doi.org/10.1111/j.1460-9568.2011.07902.x
Hunter, M. A. & May, R. B. (1993). Some myths concerning parametric and nonparametric tests. Canadian Psychology / Psychologie Canadienne, 34(4), 384-389. https://doi.org/10.1037/h0078860
Huynh, A. C. & Grossmann, I. (2020). A pathway for wisdom-focused education. Journal of Moral Education, 49(1), 9-29. https://doi.org/10.1080/03057240.2018.1496903
Kahneman, D. (2011). Thinking, fast and slow. Farrar.
Kahneman, D., Krakauer, D. C., Sibony, O., Sunstein, C. & Wolpert, D. (2022). An exchange of letters on the role of noise in collective intelligence. Collective Intelligence, 1(1). https://doi.org/10.1177/26339137221078593
Kahneman, D., Sibony, O. & CassR.Sunstein. (2021). Noise: A Flaw in Human Judgment. William Collins.
Kalinowski, P., Fidler, F. & Cumming, G. (2008). Overcoming the Inverse Probability Fallacy. Methodology, 4(4), 152-158. https://doi.org/10.1027/1614-2241.4.4.152
Kline, R. B. (2004). Beyond significance testing. Reforming data analysis methods in behavioral research. APA Books.
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). The Guilford Press.
Kline, R. B. (2013). Beyond Significance Testing: Statistics Reform in the Behavioral Sciences. American Psychological Association. http://www.jstor.org/stable/j.ctv1chrvvt
Kross, E. & Grossmann, I. (2012). Boosting wisdom: Distance from the self enhances wise reasoning, attitudes, and behavior. Journal of Experimental Psychology: General, 141(1), 43-48. https://doi.org/10.1037/a0024158
Kruschke, J. K. & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review, 25, 178-206. https://doi.org/10.3758/s13423-016-1221-4
Kühberger, A., Fritz, A., Lermer, E. & Scherndl, T. (2015). The significance fallacy in inferential statistics Psychology. BMC Research Notes, 8. https://doi.org/10.1186/s13104-015-1020-4
Lilienfeld, S. O., Ammirati, R. & Landfield, K. (2009). Giving Debiasing Away: Can Psychological Research on Correcting Cognitive Errors Promote Human Welfare? Perspectives on Psychological Science, 4(4), 390-398. https://doi.org/10.1111/j.1745-6924.2009.01144.x
Madjarova, S. J., Williams, R. J., Nwachukwu, B. U., Martin, R. K., Karlsson, J., Ollivier, M. & Pareek, A. (2022). Picking apart p values: common problems and points of confusion. Knee Surgery, Sports Traumatology, Arthroscopy, 30(10), 3245-3248. https://doi.org/10.1007/s00167-022-07083-3
Mandel, D. R. (2014). The psychology of Bayesian reasoning. Frontiers in Psychology, 5, 1144. https://doi.org/10.3389/fpsyg.2014.01144
Maxwell, S. E., Delaney, H. D. & Kelley, K. (2018). Designing Experiments and analyzing data: A model comparison perspective. Routledge.
Maxwell, S. E., Lau, M. Y., Howard, G. S. & Scott, E. (2015). Is psychology suffering from a replication crisis? American Psychologist, 70, 487-498. https://psycnet.apa.org/doi/10.1037/a0039400
Mayo, D. G. & Hand, D. (2022). Statistical significance and its critics: practicing damaging science, or damaging scientific practice? Synthese, 200(3), 220. https://doi.org/10.1007/s11229-022-03692-0
Nelson, N., Rosenthal, R. & Rosnow, R. L. (1986). Interpretation of significance levels and effect sizes by psychological researchers. American Psychologist, 41(11), 1299-1301. https://doi.org/10.1037/0003-066x.41.11.1299
Oberoi, S. S. & Atri, M. (2021). When and Where P-Value is Required: Misnomers in Clinicaland Statistical Significance. International Journal of Scientific Research, 10(1), 1-2. https://doi.org/10.36106/ijsr/9300808
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
Ortega, A. & Navarrete, G. (2017). Bayesian Hypothesis Testing: An Alternative to Null Hypothesis Significance Testing (NHST) in Psychology and Social Sciences. https://www.intechopen.com/chapters/56653
Popper, K. R. (1959). The Logic of Scientific Discovery. Hutchinson.
Pratiwi, I. M. & Ariawan, V. A. N. (2020). Introducing local wisdom by numbering and reading. 1521. https://doi.org/10.1088/1742-6596/1521/3/032013
Rice, K. M. & Krakauer, C. A. (2022). Three-Decision Methods: A Sensible Formulation of Significance Tests—and Much Else. Annual Review of Statistics and Its Application, 10(1), 525-546. https://doi.org/10.1146/annurev-statistics-033021-111159
Rodríguez, E. (2016). Estadística y psicología: análisis histórico de la inferencia estadística. En P. J. Ortega. (Ed.), Disertaciones de Enerio sobre temas diversos: Filosofía, Ciencia, Psicología y Estadística (pp. 160-166). funglode.
Rogers, B. D. (2022). Null Hypothesis Statistical Testing: A Survey of the History, Critiques, and Alternative Methodologies. University of South Carolina Scholar Commons Scholar Commons.
Santos, H. C., Huynh, A. C. & Grossmann, I. (2017). Wisdom in a complex world: A situated account of wise reasoning and its development. Social and Personality Psychology Compass, 11(10), e12341. https://doi.org/10.1111/spc3.12341
Schauer, J. M. (2022). Avoiding Questionable Research Practices in Applied Psychology. 301-342. https://doi.org/10.1007/978-3-031-04968-2_14
Shine, L. C. (1980). The Fallacy of Replacing an a Priori Significance Level With an a Posteriori Significance Level. Educational and Psychological Measurement, 40(2), 331-335. https://doi.org/10.1177/001316448004000207
Shrout, P. E. & Rodgers, J. L. (2018). Psychology, Science, and Knowledge Construction: Broadening Perspectives from the Replication Crisis. Annual Review of Psychology, 69(1), 487-510. https://doi.org/10.1146/annurev-psych-122216-011845
Silva-Ayçaguer, L. C., Suárez-Gil, P. & Fernández-Somoano, A. (2010). The null hypothesis significance test in health sciences research (1995-2006): statistical analysis and interpretation. BMC Medical Research Methodology, 10(1), 44. https://doi.org/10.1186/1471-228810-44
Stanovich, K. E. (2001). The Rationality of Educating for Wisdom. Educational Psychologist, 36(4), 247-251. https://doi.org/10.1207/s15326985ep3604_3
Stanovich, K. E. (2018a). Perceiving rationality correctly. Psychonomic Bulletin & Review, 25, 793-826.
Stanovich, K. E. (2018b). Miserliness in human cognition: the interaction of detection, override and mindware. Thinking & Reasoning, 24(4), 423-444. https://doi.org/10.1080/13546783.2018.1459314
Stanovich, K. E. & West, R. F. (2007). Natural myside bias is independent of cognitive ability. Thinking and Reasoning, 13(3), 225-247. https://doi.org/10.1080/13546780600780796
Stanovich, K. E. & West, R. F. (2008a). On the Relative Independence of Thinking Biases and Cognitive Ability. Journal of Personality and Social Psychology, 94(4), 672-695. https://doi.org/10.1037/0022-3514.94.4.672
Stanovich, K. E. & West, R. F. (2008b). On the failure of cognitive ability to predict myside and one-sided thinking biases. Thinking and Reasoning, 14(2), 129-167. https://doi.org/10.1080/13546780701679764
Stanovich, K. E., West, R. F. & Toplak, M. E. (2013). Myside Bias, Rational Thinking, and Intelligence. Current Directions in Psychological Science, 22(4), 259-264. https://doi.org/10.1177/0963721413480174
Sternberg, R. J. (2001). Why Schools Should Teach for Wisdom: The Balance Theory of Wisdom in Educational Settings. Educational Psychologist, 36(4), 227-245. https://doi.org/10.1207/s15326985ep3604_2
Sternberg, R. J. (2003). Wisdom, Intelligence, and Creativity Synthesized. Cambridge University Press.
Sternberg, R. J. & Hagen, E. S. (2019). Teaching for Wisdom. In R. J. Sternberg & J. Glück (Eds.), The Cambridge Handbook of Wisdom. Cambridge University Press. https://doi.org/10.1017/9781108568272.018
Sullivan, G. M. & Feinn, R. (2012). Using Effect Size—or Why the P Value Is Not Enough. Journal of Graduate Medical Education, 4(3), 279-282. https://doi.org/10.4300/jgme-d-1200156.1
Tabri, N. & Elliott, C. M. (2014). Principles and Practice of Structural Equation Modeling (4th ed., Vol. 1). The Guilford Press. https://doi.org/10.15353/cgjsc.v1i1.3787
Tackett, J. L., Lilienfeld, S. O., Patrick, C. J., Johnson, S. L., Krueger, R. F., Miller, J. D., Oltmanns, T. F. & Shrout, P. E. (2017). It’s Time to Broaden the Replicability Conversation: Thoughts for and From Clinical Psychological Science. Perspectives on Psychological Science, 12(5), 742-756. https://doi.org/10.1177/1745691617690042
Thompson, B. (2004). The “significance” crisis in psychology and education. Journal of Socio-Economics, 33(5), 607-613. https://doi.org/10.1016/j.socec.2004.09.034
Toplak, M. E., West, R. F. & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the Cognitive Reflection Test. Thinking & Reasoning, 20(2), 147-168. https://doi.org/10.1080/13546783.2013.844729
Vervaeke, J. & Ferraro, L. (2013). The Scientific Study of Personal Wisdom, From Contemplative Traditions to Neuroscience. 21-51. https://doi.org/10.1007/978-94-007-7987-7_2
Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Rouder, J. N. & Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin and Review, 25, 35-57. https://doi.org/10.3758/s13423-017-1343-3
Washburn, A. N., Hanson, B. E., Motyl, M., Skitka, L. J., Yantis, C., Wong, K. M., Sun, J., Prims, J. P., Mueller, A. B., Melton, Z. J., & Carsel, T. S. (2018). Why do some psychology researchers resist adopting proposed reforms to research practices? A description of researchers’ rationales. Advances in Methods and Practices in Psychological Science, 1(2), 166–173. https://doi.org/10.1177/2515245918757427
West, R. F. & Stanovich, K. E. (2003). Is probability matching smart? Associations between probabilistic choices and cognitive ability. Memory and Cognition, 31, 243-251. https://doi.org/10.3758/bf03194383
West, R. F., Toplak, M. E. & Stanovich, K. E. (2008). Heuristics and Biases as Measures of Critical Thinking: Associations with Cognitive Ability and Thinking Dispositions. Journal of Educational Psychology, 100(4), 930-941. https://doi.org/10.1037/a0012842
Wilkinson, L. & Task Force on Statistical Inference, American Psychological Association, Science Directorate. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594-604. https://doi.org/10.1037/0003-066x.54.8.594
Willingham, D. T. (2008). Critical Thinking: Why Is It So Hard to Teach? Arts Education Policy Review, 109(4), 21-32. https://doi.org/10.3200/aepr.109.4.21-32
Ziliak, S. T. & McCloskey, D. N. (2008). The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives. University of Michigan Press.
- Resumen visto - 446 veces
- PDF descargado - 263 veces
- HTML descargado - 222 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia y Educación, 2023
Afiliaciones
Carlos Ruiz-Matuk
Universidad Iberoamericana (UNIBE), República Dominicana