Mecanismos de Acción de los Flavonoides: Propiedades Antioxidantes, Antibacterianas y Antifúngicas
Issue | Vol. 6 Núm. 2 (2023): Ciencia, Ambiente y Clima |
DOI | |
Publicado | dic 29, 2023 |
Estadísticas |
Resumen
Los flavonoides, un grupo diverso de compuestos polifenólicos naturales que se encuentran en fuentes como frutas y verduras, han acaparado la atención por sus actividades biológicas, incluidas las propiedades antioxidantes, antibacterianas y antifúngicas. Esta exhaustiva revisión profundiza en los mecanismos en lo que los flavonoides combaten el estrés oxidativo y dificultan el crecimiento de bacterias y hongos. En cuanto a la acción antioxidante, los flavonoides muestran su eficacia neutralizando las especies reactivas del oxígenomediante la donación de átomos de hidrógeno y electrones, aumentando la actividad de enzimas antioxidantes endógenas y quelando iones de metales de transición. Sus efectos antibacterianos se dirigen a las bacterias Gram positivas y negativas, alterando las membranas celulares, inhibiendo procesos enzimáticos clave y suprimiendo las bombas de eflujo, impidiendo el crecimiento bacteriano y causando la muerte celular. Además, los flavonoides presentan propiedades antifúngicas al interferir en la integridad de la membrana celular fúngica, alterando la biosíntesis del ergosterol y modulando vías críticas de transducción de señales, impidiendo en última instancia el crecimiento y la patogenicidad de los hongos. Este conocimiento sobre los mecanismos de los flavonoides no sólo es prometedor para el desarrollo terapéutico, sino que también inspira futuros avances en la investigación farmacológica.
Al Aboody, M. S., & Mickymaray, S. (2020). Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics, 9(2), 45. https://doi.org/10.3390/antibiotics9020045
Aljeldah, M. M. (2022). Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics, 11(8), 1082. https://doi.org/10.3390/antibiotics11081082
Baird, L., & Yamamoto, M. (2020). The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 40(13), e00099-20. https://doi.org/10.1128/MCB.00099-20
Baldim, J. L., Alcântara, B. G. V. D., Domingos, O. D. S., Soares, M. G., Caldas, I. S., Novaes, R. D., … Chagas-Paula, D. A. (2017). The Correlation between Chemical Structures and Antioxidant, Prooxidant, and Antitrypanosomatid Properties of Flavonoids. Oxidative Medicine and Cellular Longevity, 2017, 1–12. https://doi.org/10.1155/2017/3789856
Beaufay, F., Quarles, E., Franz, A., Katamanin, O., Wholey, W.-Y., & Jakob, U. (2020). Polyphosphate Functions In Vivo as an Iron Chelator and Fenton Reaction Inhibitor. mBio, 11(4), e01017-20. https://doi.org/10.1128/mBio.01017-20
Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559–a012559. https://doi.org/10.1101/cshperspect.a012559
Catalá, A., & Díaz, M. (2016). Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Frontiers in Physiology, 7. https://doi.org/10.3389/fphys.2016.00423
Cherrak, S. A., Mokhtari-Soulimane, N., Berroukeche, F., Bensenane, B., Cherbonnel, A., Merzouk, H., & Elhabiri, M. (2016). In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. PLOS ONE, 11(10), e0165575. https://doi.org/10.1371/journal.pone.0165575
Christena, L. R., Subramaniam, S., Vidhyalakshmi, M., Mahadevan, V., Sivasubramanian, A., & Nagarajan, S. (2015). Dual role of pinostrobin-a flavonoid nutraceutical as an efflux pump inhibitor and antibiofilm agent to mitigate food borne pathogens. RSC Advances, 5(76), 61881–61887. https://doi.org/10.1039/C5RA07165H
Crozier, A., Jaganath, I. B., & Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 26(8), 1001. https://doi.org/10.1039/b802662a
Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
Da Silva, C. R., De Andrade Neto, J. B., De Sousa Campos, R., Figueiredo, N. S., Sampaio, L. S., Magalhães, H. I. F., … Nobre Júnior, H. V. (2014). Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida tropicalis Resistant to Fluconazole. Antimicrobial Agents and Chemotherapy, 58(3), 1468–1478. https://doi.org/10.1128/AAC.00651-13
De Conti Lourenço, R. M., da Silva Melo, P., & de Almeida, A. B. A. (2013). Flavonoids as Antifungal Agents. In M. Razzaghi-Abyaneh & M. Rai (Eds.), Antifungal Metabolites from Plants (pp. 283–300). Berlin, Heidelberg: Springer. Retrieved from https://doi.org/10.1007/978-3-642-38076-1_10
Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., … Kim, H. S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis (pp. 505–567). Elsevier. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/B9780128164556000159
Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377
Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., De Tommasi, N., … Dal Piaz, F. (2021). Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics, 13(5), 660. https://doi.org/10.3390/pharmaceutics13050660
Edo, G. I., Ugbune, U., Onoharigho, F. O., Ezekiel, G. O., Ugbuwe, E., & Agbo, J. J. (2023). Investigation of the metal complexes and bioactive compound formed by coordination of bioactive phytochemical from ginger (Zingiber officinale) extracts to metal ions. Food Chemistry Advances, 3, 100337. https://doi.org/10.1016/j.focha.2023.100337
El-Saber Batiha, G., Magdy Beshbishy, A., El-Mleeh, A., M. Abdel-Daim, M., & Prasad Devkota, H. (2020). Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 10(3), 352. https://doi.org/10.3390/biom10030352
Farhadi, F., Khameneh, B., Iranshahi, M., & Iranshahy, M. (2019). Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytotherapy Research: PTR, 33(1), 13–40. https://doi.org/10.1002/ptr.6208
Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador, N. (2020). The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Frontiers in Microbiology, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2019.02993
Ghitti, E., Rolli, E., Crotti, E., & Borin, S. (2022). Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms, 10(12), 2479. https://doi.org/10.3390/microorganisms10122479
Giorgio, M. (2015). Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience, 9. https://doi.org/10.3332/ecancer.2015.556
Golonko, A., Olichwier, A. J., Swislocka, R., Szczerbinski, L., & Lewandowski, W. (2022). Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity. International Journal of Molecular Sciences, 24(1), 391. https://doi.org/10.3390/ijms24010391
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272. https://doi.org/10.1007/s11101-018-9591-z
Goyal, P., Aggarwal, B. K., & Garg, S. (2010). A Study on Combinatorial Effects of Various Flavonoids for Their Antibacterial Potential Against Clinically Significant Bacterial Species. Hacettepe Journal of Biology and Chemistry, 38(4), 255–258. Retrieved from https://dergipark.org.tr/en/pub/hjbc/issue/61874/925966
He, F., Ru, X., & Wen, T. (2020). NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences, 21(13), 4777. https://doi.org/10.3390/ijms21134777
Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
Holmes, A. R., Cardno, T. S., Strouse, J. J., Ivnitski-Steele, I., Keniya, M. V., Lackovic, K., … Cannon, R. D. (2016). Targeting efflux pumps to overcome antifungal drug resistance. Future Medicinal Chemistry, 8(12), 1485–1501. https://doi.org/10.4155/fmc-2016-0050
Horniblow, R. D., Henesy, D., Iqbal, T. H., & Tselepis, C. (2017). Modulation of iron transport, metabolism and reactive oxygen status by quercetin–iron complexes in vitro. Molecular Nutrition & Food Research, 61(3), 1600692. https://doi.org/10.1002/mnfr.201600692
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., … Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA, 81(1), 7–11. https://doi.org/10.1016/j.jcma.2017.07.012
Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., & Chen, P. (2008). The Nrf2–ARE Pathway: An Indicator and Modulator of Oxidative Stress in Neurodegeneration. Annals of the New York Academy of Sciences, 1147(1), 61–69. https://doi.org/10.1196/annals.1427.036
Kang, K., Fong, W.-P., & Tsang, P. W.-K. (2010). Novel antifungal activity of purpurin against Candida species in vitro. Medical Mycology, 48(7), 904–911. https://doi.org/10.3109/13693781003739351
Kariu, T., Nakao, R., Ikeda, T., Nakashima, K., Potempa, J., & Imamura, T. (2017). Inhibition of gingipains and Porphyromonas gingivalis growth and biofilm formation by prenyl flavonoids. Journal of Periodontal Research, 52(1), 89–96. https://doi.org/10.1111/jre.12372
Kejík, Z., Kaplánek, R., Masařík, M., Babula, P., Matkowski, A., Filipenský, P., … Jakubek, M. (2021). Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. International Journal of Molecular Sciences, 22(2), 646. https://doi.org/10.3390/ijms22020646
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules, 26(13), 4021. https://doi.org/10.3390/molecules26134021
Kim, S., Woo, E.-R., & Lee, D. G. (2019). Synergistic Antifungal Activity of Isoquercitrin: Apoptosis and Membrane Permeabilization Related to Reactive Oxygen Species in Candida albicans. IUBMB Life, 71(2), 283–292. https://doi.org/10.1002/iub.1973
Kong, J.-M., Chia, L.-S., Goh, N.-K., Chia, T.-F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923–933. https://doi.org/10.1016/S0031-9422(03)00438-2
Lee, S., & Hu, L. (2020). Nrf2 activation through the inhibition of Keap1–Nrf2 protein–protein interaction. Medicinal Chemistry Research, 29(5), 846–867. https://doi.org/10.1007/s00044-020-02539-y
Liang, C., Chang, C., Liang, C., Hung, K., & Hsieh, C. (2014). In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames. Molecules, 19(4), 4681–4694. https://doi.org/10.3390/molecules19044681
Liu, M., Zhang, G., Zhou, K., Wen, J., Zheng, F., Sun, L., & Ren, X. (2023). Structural characterization, antioxidant activity, and the effects of Codonopsis pilosula polysaccharides on the solubility and stability of flavonoids. Journal of Pharmaceutical and Biomedical Analysis, 229, 115368. https://doi.org/10.1016/j.jpba.2023.115368
Lo, S.-C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617. https://doi.org/10.1038/sj.emboj.7601243
Maisuria, V. B., Okshevsky, M., Déziel, E., & Tufenkji, N. (2019). Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Advanced Science, 6(15), 1802333. https://doi.org/10.1002/advs.201802333
Mälkiä, A., Murtomäki, L., Urtti, A., & Kontturi, K. (2004). Drug permeation in biomembranes: In vitro and in silico prediction and influence of physicochemical properties. European Journal of Pharmaceutical Sciences, 23(1), 13–47. https://doi.org/10.1016/j.ejps.2004.05.009
Mangoyi, R., Midiwo, J., & Mukanganyama, S. (2015). Isolation and characterization of an antifungal compound 5-hydroxy-7,4’-dimethoxyflavone from Combretum zeyheri. BMC Complementary and Alternative Medicine, 15(1), 405. https://doi.org/10.1186/s12906-015-0934-7
Martínez-Flórez, S., González-Gallego, J., & Culebras, J. M. (2002). Los flavonoides: Propiedades y acciones antioxidantes. Nutr. Hosp.
Mikhed, Y., Daiber, A., & Steven, S. (2015). Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. International Journal of Molecular Sciences, 16(7), 15918–15953. https://doi.org/10.3390/ijms160715918
Mira, L., Tereza Fernandez, M., Santos, M., Rocha, R., Helena Florêncio, M., & Jennings, K. R. (2002). Interactions of Flavonoids with Iron and Copper Ions: A Mechanism for their Antioxidant Activity. Free Radical Research, 36(11), 1199–1208. https://doi.org/10.1080/1071576021000016463
Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/j.giec.2020.06.004
Mucha, P., Skoczyńska, A., Małecka, M., Hikisz, P., & Budzisz, E. (2021). Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules, 26(16), 4886. https://doi.org/10.3390/molecules26164886
Nabil-Adam, A., Elnosary, M. E., Ashour, M. L., El-Moneam, N. M. A., Shreadah, M. A., Nabil-Adam, A., … Shreadah, M. A. (2023). Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. In Flavonoid Metabolism—Recent Advances and Applications in Crop Breeding. IntechOpen. Retrieved from https://www.intechopen.com/chapters/85627
Nakamura, K., Ishiyama, K., Sheng, H., Ikai, H., Kanno, T., & Niwano, Y. (2015). Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria. Retrieved from 10.1021/jf5058588
Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418–425. https://doi.org/10.1093/ajcn/74.4.418
Ninkuu, V., Zhang, L., Yan, J., Fu, Z., Yang, T., & Zeng, H. (2021). Biochemistry of Terpenes and Recent Advances in Plant Protection. International Journal of Molecular Sciences, 22(11), 5710. https://doi.org/10.3390/ijms22115710
Oh, I., Yang, W.-Y., Chung, S.-C., Kim, T.-Y., Oh, K.-B., & Shin, J. (2011). In vitro sortase a inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Archives of Pharmacal Research, 34(2), 217–222. https://doi.org/10.1007/s12272-011-0206-0
Ohemeng, K. A., Schwender, C. F., Fu, K. P., & Barrett, J. F. (1993). DNA Gyrase Inhibitory And Antibacterial Activity Of Some Flavones.
Osonga, F. J., Akgul, A., Miller, R. M., Eshun, G. B., Yazgan, I., Akgul, A., & Sadik, O. A. (2019). Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega, 4(7), 12865–12871. https://doi.org/10.1021/acsomega.9b00077
Osorio, M., Carvajal, M., Vergara, A., Butassi, E., Zacchino, S., Mascayano, C., … Vásquez-Martínez, Y. (2021). Prenylated Flavonoids with Potential Antimicrobial Activity: Synthesis, Biological Activity, and In Silico Study. International Journal of Molecular Sciences, 22(11), 5472. https://doi.org/10.3390/ijms22115472
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., … Sudesh, K. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
Sana, M., & Jameel, H. (2015). Miracle Remedy: Inhibition of Bacterial Efflux Pumps by Natural Products. Journal of Infectious Diseases & Therapy, 03(02). https://doi.org/10.4172/2332-0877.1000213
Sanver, D., Murray, B. S., Sadeghpour, A., Rappolt, M., & Nelson, A. L. (2016). Experimental Modeling of Flavonoid–Biomembrane Interactions. Langmuir, 32(49), 13234–13243. https://doi.org/10.1021/acs.langmuir.6b02219
Sarbu, L. G., Bahrin, L. G., Babii, C., Stefan, M., & Birsa, M. L. (2019). Synthetic flavonoids with antimicrobial activity: A review. Journal of Applied Microbiology, 127(5), 1282–1290. https://doi.org/10.1111/jam.14271
Satta, S., Mahmoud, A. M., Wilkinson, F. L., Yvonne Alexander, M., & White, S. J. (2017). The Role of Nrf2 in Cardiovascular Function and Disease. Oxidative Medicine and Cellular Longevity, 2017, 1–18. https://doi.org/10.1155/2017/9237263
Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Ali Shah, S. A., Khatib, A., Mukhtar, S., … Zakaria, Z. A. (2022). Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules, 27(4), 1149. https://doi.org/10.3390/molecules27041149
Shoaib, M., Ali Shah, S. W., Ali, N., Umar, N., Shah, I., Ullah, S., & Tahir, M. N. (2020). Synthesis, crystal studies and biological evaluation of flavone derivatives. Pakistan Journal of Pharmaceutical Sciences, 33(1), 11–20.
Silva-Islas, C. A., & Maldonado, P. D. (2018). Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacological Research, 134, 92–99. https://doi.org/10.1016/j.phrs.2018.06.013
Simmler, C., Pauli, G. F., & Chen, S.-N. (2013). Phytochemistry and biological properties of glabridin. Fitoterapia, 90, 160–184. https://doi.org/10.1016/j.fitote.2013.07.003
Speisky, H., Shahidi, F., Costa De Camargo, A., & Fuentes, J. (2022). Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants, 11(1), 133. https://doi.org/10.3390/antiox11010133
Stavri, M., Piddock, L. J. V., & Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. Journal of Antimicrobial Chemotherapy, 59(6), 1247–1260. https://doi.org/10.1093/jac/dkl460
Suraweera, T. L., Rupasinghe, H. P. V., Dellaire, G., & Xu, Z. (2020). Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants, 9(10), 973. https://doi.org/10.3390/antiox9100973
Tejero, J., Shiva, S., & Gladwin, M. T. (2019). Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews, 99(1), 311–379. https://doi.org/10.1152/physrev.00036.2017
Thebti, A., Meddeb, A., Ben Salem, I., Bakary, C., Ayari, S., Rezgui, F., … Ouzari, H.-I. (2023). Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics, 12(2), 225. https://doi.org/10.3390/antibiotics12020225
Tsanova-Savova, S., Denev, P., & Ribarova, F. (2018). Flavonoids in Foods and Their Role in Healthy Nutrition. In Diet, Microbiome and Health (pp. 165–198). Elsevier. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/B9780128114407000077
Waditzer, M., & Bucar, F. (2021). Flavonoids as Inhibitors of Bacterial Efflux Pumps. Molecules, 26(22), 6904. https://doi.org/10.3390/molecules26226904
Waheed Janabi, A. H., Kamboh, A. A., Saeed, M., BiBi, J., Naveed, M., & Huixia, L. (2019). Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iranian Journal of Basic Medical Sciences, (Online First). https://doi.org/10.22038/ijbms.2019.35125.8353
Wang, Y.-H., Dong, H.-H., Zhao, F., Wang, J., Yan, F., Jiang, Y.-Y., & Jin, Y.-S. (2016). The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorganic & Medicinal Chemistry Letters, 26(13), 3098–3102. https://doi.org/10.1016/j.bmcl.2016.05.013
Weston, L. A., & Mathesius, U. (2013). Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy. Journal of Chemical Ecology, 39(2), 283–297. https://doi.org/10.1007/s10886-013-0248-5
Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology and Medicine, 36(7), 838–849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
Williamson, G., Kay, C. D., & Crozier, A. (2018). The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351
Xian, D., Guo, M., Xu, J., Yang, Y., Zhao, Y., & Zhong, J. (2021). Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Report, 26(1), 134–146. https://doi.org/10.1080/13510002.2021.1962094
Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2014). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Current Medicinal Chemistry, 22(1), 132–149. https://doi.org/10.2174/0929867321666140916113443
Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2021). Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Scientific Reports, 11(1), 10471. https://doi.org/10.1038/s41598-021-90035-7
Yuan, G., Xia, X., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2022). Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals, 15(10), 1190. https://doi.org/10.3390/ph15101190
Zhang, L., Yan, Y., Zhu, J., Xia, X., Yuan, G., Li, S., … Luo, X. (2023). Quinone Pool, a Key Target of Plant Flavonoids Inhibiting Gram-Positive Bacteria. Molecules, 28(13), 4972. https://doi.org/10.3390/molecules28134972
Zhang, Q., Yang, W., Liu, J., Liu, H., Lv, Z., Zhang, C., … Jiao, Z. (2020). Identification of Six Flavonoids as Novel Cellular Antioxidants and Their Structure-Activity Relationship. Oxidative Medicine and Cellular Longevity, 1–12. https://doi.org/10.1155/2020/4150897
- Resumen visto - 382 veces
- PDF (English) descargado - 224 veces
- HTML (English) descargado - 84 veces
- XML (English) descargado - 11 veces
- ePUB (English) descargado - 11 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Science, Environment and Climate, 2024
Afiliaciones
Bianca Rodríguez
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Lirianny Pacheco
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Iran Bernal
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Marianne Piña
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana