Contaminación de aguas por elementos metálicos traza y empleo de carbón activado para su remoción
Issue | Vol. 6 Núm. 1 (2023): Ciencia, Ambiente y Clima |
DOI | |
Publicado | jun 29, 2023 |
Estadísticas |
Resumen
La contaminación de las aguas es uno de los principales problemas ambientales que la comunidad científica internacional enfrenta actualmente, debido al vertiginoso aumento del vertimiento deslocalizado de compuestos orgánicos persistentes y elementos metálicos traza, cuya presencia tiene un elevado impacto en la salud humana y los ecosistemas. En el presente trabajo se realizó un análisis bibliográfico sobre la contaminación de aguas superficiales por elementos metálicos traza y sus principales fuentes de contaminación, dentro de las cuales la actividad minera e industrial son las principales fuentes antrópicas que contribuyen con el aumento de dichos contaminantes. Se exponen algunas de las sintomatologías derivadas del envenenamiento por elementos metálicos traza como el arsénico, plomo, mercurio y cromo en humanos. También se investigó sobre las ventajas y desventajas de los métodos convencionales (precipitación química, floculación/coagulación, intercambio iónico, membranas) y no convencionales (adsorción, fitorremediación, pilas de combustión microbianas y el uso de nanotecnologías) empleados en el tratamiento de las aguas contaminadas por elementos metálicos traza. La metodología más empleada para la eliminación de los elementos metálicos traza es la adsorción y el adsorbente más utilizado es el carbón activado (CA). En este trabajo se abunda sobre la relación entre los parámetros externos (pH, temperatura y fuerza iónica) e internos (área superficial, tamaño de poros y la presencia de heteroátomos) en el proceso de adsorción empleando el CA y de las fuentes de materia prima para la obtención de estos.
Abdel Maksoud, M. I. A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. A. H., Rooney, D. W. & Osman, A. I. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403, 213096. https://doi.org/10.1016/j.ccr.2019.213096
Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J. & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38. https://doi.org/10.1016/j.jiec.2019.03.029
Abdulrazak, S., Hussaini, K. & Sani, H. M. (2017). Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Applied Water Science, 7(6), 3151-3155. https://doi.org/10.1007/s13201-016-0460-x
Afolabi, T. J., Alade, A. O., Jimoh, M. O. & Fashola, I. O. (2016). Heavy metal ions adsorption from dairy industrial wastewater using activated carbon from milk bush kernel shell. Desalination and Water Treatment, 57(31), 14565-14577. https://doi.org/10.1080/19443994.2015.1074619
Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z. & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008. https://doi.org/10.1016/j.chemosphere.2020.126008
Ajala, A. K., Otunola, O. O. & Oyeniyan, W. O. (2020). Adsorption of Lead and Iron from Industrial Wastewater using Melon (Citrullus Colocynthis) Husk Activated Carbon. International Journal of Engineering Research & Technology, 9(7), 1638-1642.
Akpomie, K. G., Dawodu, F. A. & Adebowale, K. O. (2015). Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757-767. https://doi.org/10.1016/j.aej.2015.03.025
Alamri, D. A., Al-Solaimani, S. G., Abohassan, R. A., Rinklebe, J. & Shaheen, S. M. (2021). Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea, Saudi Arabia. Environmental geochemistry and health, 43(2), 4819-4830. https://doi.org/10.1007/s10653-021-00956-5
Alhameedawi, F. A. H., Challab, M. K. & Khathi, M. T. (2020). Use Activated Carbon Prepared from Some Palm Waste to Remove Co (II) and Cu (II) from Sewage Water. University of Thi-Qar Journal of Science, 7(2), 101-105.
Alkherraz, A. M., Ali, A. K. & Elsherif, K. M. (2020). Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies. Chem. Int, 6(1), 11-20.
Alonso, D. L., Pérez, R., Okio, C. K. & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. Journal of environmental management, 264, 110478.
Alvarez-Galvan, Y., Minofar, B., Futera, Z., Francoeur, M., Jean-Marius, C., Brehm, N., Yacou, C., Jauregui-Haza, U. J. & Gaspard, S. (2022). Adsorption of Hexavalent Chromium Using Activated Carbon Produced from Sargassum ssp.: Comparison between Lab Experiments and Molecular Dynamics Simulations. Molecules, 27(18), 6040.
Álvarez-Torrellas, S., Peres, J., Gil-Álvarez, V., Ovejero, G. & García, J. (2017). Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chemical Engineering Journal, 320, 319-329.
Amoakwah, E., Ahsan, S., Rahman, M. A., Asamoah, E., Essumang, D. K., Ali, M. & Islam, K. R. (2020). Assessment of heavy metal pollution of soil-water-vegetative ecosystems associated with artisanal gold mining. Soil and Sediment Contamination: An International Journal, 29(7), 788-803.
Ani, J. U., Ochonogor, A. E., Akpomie, K. G., Olikagu, C. S. & Igboanugo, C. C. (2019). Abstraction of arsenic (III) on activated carbon prepared from Dialium guineense seed shell: kinetics, isotherms and thermodynamic studies. SN Applied Sciences, 1(10), 1304. https://doi.org/10.1007/s42452-019-1335-1
Antunes, I. M. H. R., Neiva, A., Albuquerque, M., Carvalho, P., Santos, A. & Cunha, P. P. (2018). Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal). Environmental geochemistry and health, 40(1), 521-542.
Arshad, H., Iram, J. & Khan, N. A. (2014). Characterization and treatment of electroplating industry wastewater using Fenton’s reagent. Journal of Chemical and Pharmaceutical Research, 6(1), 622-627.
Asad, S. A., Farooq, M., Afzal, A. & West, H. (2019). Integrated phytobial heavy metal remediation strategies for a sustainable clean environment-A review. Chemosphere, 217, 925-941.
Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37-59.
Baloch, A., Qaisrani, Z. N., Zahid, I., Hussain, S., Mengal, A. N., Sami, S. K., . . . Sultan, S. H. (2019). Removal of Zinc (II) from municipal wastewater using chemically modified activated carbon developed from Rice husk and Kikar charcoal. Journal of Applied and Emerging Sciences, 9(1), 41.
Bankole, M. T., Abdulkareem, A. S., Mohammed, I. A., Ochigbo, S. S., Tijani, J. O., Abubakre, O. K. & Roos, W. D. (2019). Selected Heavy Metals Removal From Electroplating Wastewater by Purified and Polyhydroxylbutyrate Functionalized Carbon Nanotubes Adsorbents. Scientific reports, 9(1), 4475. https://doi.org/10.1038/s41598-018-37899-4
Bansal, R. C. & Goyal, M. (2005). Activated carbon adsorption. CRC press.
Barik, B., Kumar, A., Nayak, P. S., Achary, L. S. K., Rout, L. & Dash, P. (2020). Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Materials Chemistry and Physics, 239, 122028. https://doi.org/10.1016/j.matchemphys.2019.122028
Bayisa, Y. M., Bullo, T. A. & Akuma, D. A. (2021). Chromium removal from tannery effluents by adsorption process via activated carbon chat stems (Catha edulis) using response surface methodology. BMC Research Notes, 14(1), 431. https://doi.org/10.1186/s13104021-05855-7
Berihun, D. (2017). Removal of chromium from industrial wastewater by adsorption using coffee husk. J Mater Sci Eng, 6(2), 331.
Bhairappa, A. A., Konka, S. K. & Lade, R. M. (2020). Iron Adsorption from Textile Industrial Effluent on Activated Carbon Prepared from Tamarind Seeds (Tamarindus indica L.).
Borji, H., Ayoub, G. M., Bilbeisi, R., Nassar, N. & Malaeb, L. (2020). How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater? Water, Air, & Soil Pollution, 231(7), 330. https://doi.org/10.1007/s11270-020-04681-0
Briffa, J., Sinagra, E. & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.
Chaemiso, T. D. & Nefo, T. (2019). Removal methods of heavy metals from laboratory wastewater. Journal of Natural Sciences Research, 9(2), 36-42.
Chen, W.-H., Hoang, A. T., Nižetić, S., Pandey, A., Cheng, C. K., Luque, R., Ong, H. C., Thomas, S. & Nguyen, X. P. (2022). Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection, 160, 704-733.
Chin, J. F., Heng, Z. W., Teoh, H. C., Chong, W. C. & Pang, Y. L. (2021). Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater–Modification, application and mechanism. Chemosphere, 133035.
Chowdhury, Z. K. (2013). Activated carbon: solutions for improving water quality: American Water Works Association.
Custodio, M., Cuadrado, W., Peñaloza, R., Montalvo, R., Ochoa, S. & Quispe, J. (2020). Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the Central Andes of Peru. Water, 12(7), 1946.
Da’na, E. (2017). Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials, 247, 145-157. https://doi.org/10.1016/j.micromeso.2017.03.050
De Beni, E., Giurlani, W., Fabbri, L., Emanuele, R., Santini, S., Sarti, C., Martellini, T., Piciollo, E., Cincinelli, A. & Innocenti, M. (2022). Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater. Chemosphere, 292, 133448. https://doi.org/10.1016/j.chemosphere.2021.133448
Deb, V. K., Rabbani, A., Upadhyay, S., Bharti, P., Sharma, H., Rawat, D. S. & Saxena, G. (2020). Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives. In P. K. Arora (Ed.), Microbial Technology for Health and Environment, (pp. 161-189). Springer Singapore.
Deng, Y., Huang, S., Laird, D. A., Wang, X. & Meng, Z. (2019). Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere, 218, 308-318. https://doi.org/10.1016/j.chemosphere.2018.11.081
Devi, P. & Kumar, P. (2020). Concept and application of phytoremediation in the fight of heavy metal toxicity. Journal of Pharmaceutical Sciences and Research, 12(6), 795-804.
Dhaarini, S. T., Gomathi, R., Manoj Kumaar, C. & Yogeswari, K. (2021). An innovative prototype furnace designed to produce activated carbon for removal of chromium from tannery waste. Materials Today: Proceedings, 45, 6016-6020. https://doi.org/10.1016/j.matpr.2020.09.530
Dimpe, K. M., Ngila, J. C. & Nomngongo, P. N. (2017). Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater. Cogent Engineering, 4(1), 1330912. https://doi.org/10.1080/23311916.2017.1330912
Dimpe, K. M., Ngila, J. C. & Nomngongo, P. N. (2018). Preparation and application of a tyre-based activated carbon solid phase extraction of heavy metals in wastewater samples. Physics and Chemistry of the Earth, Parts A/B/C, 105, 161-169. https://doi.org/10.1016/j.pce.2018.02.005
dos Santos, A. J., Barazorda-Ccahuana, H. L., Caballero-Manrique, G., Chérémond, Y., Espinoza-Montero, P. J., González-Rodríguez, J. R., Jáuregui-Haza, U. J., Lanza, M. R. V., Nájera, A., Oporto, C., Pérez Parada, A., Pérez, T., Quezada, V. D., Rojas, V., Sosa, V., Thiam, A., Torres-Palma, R. A., Vargas, R. & Garcia-Segura, S. (2023). Accelerating innovative water treatment in Latin America. Nature Sustainability, 6(4), 349-351. https://doi.org/10.1038/s41893-022-01042-z
Duan, C., Ma, T., Wang, J. & Zhou, Y. (2020). Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal of Water Process Engineering, 37, 101339. https://doi.org/10.1016/j.jwpe.2020.101339
EPA, U. (2006). Edition of the drinking water standards and health advisories. US Environmental Protection Agency, Washington, DC, EPA.
Fei, Y. & Hu, Y. H. (2022). Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. Journal of Materials Chemistry A, 10(3), 1047-1085.
Fernández, M., Martín, G., Corzo, J., de la Linde, A., García, E., López, M. & Sousa, M. (2018). Design and testing of a new diatom-based index for heavy metal pollution. Archives of environmental contamination and toxicology, 74(1), 170-192.
Flora, S. J. & Agrawal, S. (2017). Arsenic, cadmium, and lead Reproductive and developmental toxicology (pp. 537-566): Elsevier.
Francoeur, M., Ferino-Pérez, A., Yacou, C., Jean-Marius, C., Emmanuel, E., Chérémond, Y., Jauregui-Haza, U. & Gaspard, S. (2021). Activated carbon synthetized from Sargassum (sp) for adsorption of caffeine: Understanding the adsorption mechanism using molecular modeling. Journal of Environmental Chemical Engineering, 9(1), 104795.
Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of environmental management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
Fu, Z. & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology mechanisms and methods, 30(3), 167-176.
Gautam, P. K., Gautam, R. K., Banerjee, S., Chattopadhyaya, M. & Pandey, J. (2016). Heavy metals in the environment: fate, transport, toxicity and remediation technologies. Nova Sci Publishers, 60, 101-130.
Ghorpade, A. & Ahammed, M. M. (2018). Water treatment sludge for removal of heavy metals from electroplating wastewater. Environmental Engineering Research, 23(1), 92-98.
Gyamfi, E., Appiah-Adjei, E. K. & Adjei, K. A. (2019). Potential heavy metal pollution of soil and water resources from artisanal mining in Kokoteasua, Ghana. Groundwater for Sustainable Development, 8, 450-456.
Haldar, S. & Ghosh, A. (2020). Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review. 3 Biotech, 10(5), 205. https://doi.org/10.1007/s13205-020-02195-4
Hargreaves, A. J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., Cartmell, E. & Campo, P. (2018). Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technologies and Environmental Policy, 20(2), 393-402. https://doi.org/10.1007/s10098-017-1481-3
Hasan, S. M. M., Akber, M. A., Bahar, M. M., Islam, M. A., Akbor, M. A., Siddique, M. A. B. & Islam, M. A. (2021). Chromium contamination from tanning industries and Phytoremediation potential of native plants: a study of savar tannery industrial estate in Dhaka, Bangladesh. Bulletin of Environmental Contamination and Toxicology, 1-9.
Hemavathy, R., Kumar, P. S., Kanmani, K. & Jahnavi, N. (2020). Adsorptive separation of Cu (II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. Journal of cleaner production, 249, 119390.
Hsu, L.-C., Huang, C.-Y., Chuang, Y.-H., Chen, H.-W., Chan, Y.-T., Teah, H. Y., Chen, T.-Y., Chang, C.-F., Liu, Y.-T. & Tzou, Y.-M. (2016). Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Scientific reports, 6(1), 1-12.
Inobeme, A., Mathew, J. T., Adetunji, C. O., Ajai, A. I., Inobeme, J., Maliki, M., Okonkwo, S., Adekoya, M. A., Bamigboye, M. O., Jacob, J. O. & Eziukwu, C. A. (2023). Recent advances in nanotechnology for remediation of heavy metals. Environmental monitoring and assessment, 195(1), 1-24.
Iturbides, R. D. L. C., Haza, U. J. & Polaert, I. (2022). Recent technological innovations on continuous microwave assisted biomass pyrolysis and perspectives for industrial scale applications. Bioresource Technology Reports, 101202.
Jayakumar, D. R. S., Daisy, T., Kalaiselvi, J., Mahalakshmi, P. & Soumiya, V. (2020). A Theoretical study on the Microbial Fuel Cells Technology for Waste Water Treatment along with Heavy Metal Reduction and Power Generation using Nano catalysts.
Jayawardena, U. A., Angunawela, P., Wickramasinghe, D. D., Ratnasooriya, W. D. & Udagama, P. V. (2017). Heavy metal–induced toxicity in the Indian green frog: Biochemical and histopathological alterations. Environmental toxicology and chemistry, 36(10), 2855-2867.
Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y. & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of soils and sediments, 18(2), 624-639.
Jin, Y., Chen, C., Chen, X., Zhang, L., Chen, Y., Cai, Z., . . . Guo, C. (2006). Standards for drinking water quality national standard of the People’s Republic of China (GB 5749-2006). Ministry of Health. Joseph, L., Jun, B.-M., Flora, J. R. V., Park, C. M. & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198
Kanoje, M., Bhor, M., Toche, S. & Jadhav, P. (2021). Removal of Zinc from Industrial Wastewater using Rice Husk and Activated Carbon.
Khalid, N., Rizvi, Z. F., Yousaf, N., Khan, S. M., Noman, A., Aqeel, M., Latif, K. & Rafique, A. (2021). Rising metals concentration in the environment: a response to effluents of leather industries in Sialkot. Bulletin of Environmental Contamination and Toxicology, 106(3), 493-500. https://doi.org/10.1007/s00128-021-03111-z
Khan, M. N., Wasim, A. A., Sarwar, A. & Rasheed, M. F. (2011). Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environmental monitoring and assessment, 182(1), 587-595. https://doi.org/10.1007/s10661-011-1899-8
Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. (2018). Metal– organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107.
Kolbasov, A., Sinha-Ray, S., Yarin, A. & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250-263.
Kumar, S., Islam, A. R. M. T., Islam, H. M. T., Hasanuzzaman, M., Ongoma, V., Khan, R. & Mallick, J. (2021). Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine region, Fiji. Journal of environmental management, 293, 112868.
Kumpiene, J., Lagerkvist, A. & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Management, 28(1), 215-225. https://doi.org/10.1016/j.wasman.2006.12.012
Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H. & Babel, S. (2006). Physico– chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1), 83-98. https://doi.org/10.1016/j.cej.2006.01.015
Kwiatkowski, J. F. (2011). Activated carbon: classifications, properties and applications. Nova Science Publishers, Incorporated.
Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., Xiong, Q. & Huang, H. (2020). Nitrogen containing functional groups of biochar: An overview. Bioresource Technology, 298, 122286. https://doi.org/10.1016/j.biortech.2019.122286
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y. & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
Liu, L., Li, W., Song, W. & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206-219.
Lu, X.-g. & Guo, Y.-t. (2019). Removal of Pb (II) from aqueous solution by sulfur-functionalized walnut shell. Environmental Science and Pollution Research, 26(13), 12776-12787. https://doi.org/10.1007/s11356-019-04753-7
Ma, J., Huang, W., Zhang, X., Li, Y. & Wang, N. (2021). The utilization of lobster shell to prepare low-cost biochar for high-efficient removal of copper and cadmium from aqueous: Sorption properties and mechanisms. Journal of Environmental Chemical Engineering, 9(1), 104703. https://doi.org/10.1016/j.jece.2020.104703
Ma, Yang, J., Gao, X., Liu, Z., Liu, X. & Xu, Z. (2019). Removal of chromium (VI) from water by porous carbon derived from corn straw: Influencing factors, regeneration and mechanism. Journal of Hazardous Materials, 369, 550-560. https://doi.org/10.1016/j.jhazmat.2019.02.063
Maarof, H. I., Daud, W. M. A. W. & Aroua, M. K. (2017). Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Reviews in Chemical Engineering, 33(4), 359-386.
Magnaye, R. C. (2019). The Removal of Cu 2 in Industrial Wastewater Using the Activated Carbon Derived from Mango (Mangifera indica) Leaves.
Mahurpawar, M. (2015). Effects of heavy metals on human health. International Journal of Reseacrh-Granthaalayah, ISSN-23500530, 2394-3629.
Maleki, A., Hayati, B., Najafi, F., Gharibi, F. & Joo, S. W. (2016). Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: preparation, characterization and adsorption studies. Journal of Molecular Liquids, 224, 95-104.
Malik, L. A., Bashir, A., Qureashi, A. & Pandith, A. H. (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 17(4), 1495-1521.
Manirethan, V. & Balakrishnan, R. M. (2020). Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon. Environmental Technology & Innovation, 20, 101085. https://doi.org/10.1016/j.eti.2020.101085
Manirethan, V., Raval, K., Rajan, R., Thaira, H. & Balakrishnan, R. M. (2018). Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. Journal of environmental management, 214, 315-324.
Martín-Lara, M. A., Blázquez, G., Trujillo, M. C., Pérez, A. & Calero, M. (2014). New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. Journal of cleaner production, 81, 120-129. https://doi.org/10.1016/j.jclepro.2014.06.036
Masindi, V. & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132.
Mishra, S. & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health. Part C, Environmental carcinogenesis & ecotoxicology reviews, 34(1), 1-32. https://doi.org/10.1080/10590501.2015.1096883
Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S. & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health Environmental biotechnology: For sustainable future (pp. 103-125). Springer.
Mochizuki, H. (2019). Arsenic neurotoxicity in humans. International journal of molecular sciences, 20(14), 3418.
Mukherjee, S., Mukhopadhyay, S., Hashim, M. A. & Sen Gupta, B. (2015). Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524
Nazaripour, M., Reshadi, M. A. M., Mirbagheri, S. A., Nazaripour, M. & Bazargan, A. (2021). Research trends of heavy metal removal from aqueous environments. Journal of environmental management, 287, 112322. https://doi.org/10.1016/j.jenvman.2021.112322
Niksirat, M., Sadeghi, R. & Esmaili, J. (2019). Removal of Mn from aqueous solutions, by activated carbon obtained from tire residuals. SN Applied Sciences, 1(7), 782. https://doi.org/10.1007/s42452-0190797-5
Norma Cubana 827. (2016). NC 827: Agua potable-Requisitos sanitarios. Cuba.
Nwakonobi, T. U., Onoja, S. B. & Ogbaje, H. (2018). Removal of Certain Heavy Metals from Brewery Wastewater Using Date Palm Seeds Activated Carbon. Applied Engineering in Agriculture, 34(1), 233-238. https://doi.org/10.13031/aea.11875
Nwosu‐Obieogu, K. & Okolo, B. I. (2020). Biosorption of chromium (VI) from textile waste water using luffa cylindrica activated carbon. Environmental Quality Management, 29(4), 23-31.
Ojoawo, S. O., Oyekanmi, S. E. & Naik, P. A. (2019). Adsorption And Desorption Of Fe2+ Using Sugarcane Bagasse Activated Carbon In Remediating Metal Galvanizing Industrial Wastewater. Think India Journal, 22(14), 15021-15034.
Olaoye, R. A., Afolayan, O. D., Mustapha, O. I. & Adeleke, H. G. (2018). The efficacy of banana peel activated carbon in the removal of cyanide and selected metals from cassava processing wastewater. Advances in research, 16(1), 1-12.
Olayebi, O. O. & Adebayo, A. T. (2017). Removal of heavy metals from petroleum refinery effluent using coconut shell-based activated carbon. CARD Int. J. Eng. Emerg. Sci. Disc, 2(2), 102-117.
Özsin, G., Kılıç, M., Apaydın-Varol, E. & Pütün, A. E. (2019). Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Applied Water Science, 9(3), 56. https://doi.org/10.1007/s13201-019-0942-8
Packialakshmi, S., Anuradha, B., Nagamani, K., Sarala Devi, J. & Sujatha, S. (2021). Treatment of industrial wastewater using coconut shell based activated carbon. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.548
Panigrahi, T. & Santhoskumar, A. U. (2020). Adsorption process for reducing heavy metals in Textile Industrial Effluent with low cost adsorbents. Prog. Chem. Biochem. Res, 3, 135-139.
Pavithra, K. G. & Jaikumar, V. (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1-19.
Peng, W., Li, X., Xiao, S. & Fan, W. (2018). Review of remediation technologies for sediments contaminated by heavy metals. Journal of soils and sediments, 18(4), 1701-1719.
Pérez, Y. A., Cortés, D. A. G. & Haza, U. J. J. (2022). Humedales construidos como alternativa de tratamiento de aguas residuales en zonas urbanas: una revisión. Ecosistemas, 31(1), 2279-2279.
Pratush, A., Kumar, A. & Hu, Z. (2018). Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology, 21(3), 97-106.
Qasem, N. A. A., Mohammed, R. H. & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545021-00127-0
Qiao, D., Wang, G., Li, X., Wang, S. & Zhao, Y. (2020). Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere, 248, 125988.
Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S. & Moghadamnia, A.-a. (2017). Cadmium toxicity and treatment: An update. Caspian journal of internal medicine, 8(3), 135.
Rehman, K., Fatima, F., Waheed, I. & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of cellular biochemistry, 119(1), 157-184.
Reshadi, M. A. M., Bazargan, A. & McKay, G. (2020). A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Science of the Total Environment, 731, 138863. https://doi.org/10.1016/j.scitotenv.2020.138863
Rodríguez, J. & Mandalunis, P. M. (2018). A review of metal exposure and its effects on bone health. Journal of toxicology, 2018.
Sadeek, S. A., Negm, N. A., Hefni, H. H. & Wahab, M. M. A. (2015). Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures. International journal of biological macromolecules, 81, 400-409.
Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H. & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of environmental management, 185, 70-78. https://doi.org/10.1016/j.jenvman.2016.10.023
Saikia, J., Gogoi, A. & Baruah, S. (2019). Nanotechnology for water remediation Environmental Nanotechnology (pp. 195-211). Springer.
Saini, A. S. & Melo, J. S. (2013). Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresource Technology, 149, 155-162. https://doi.org/10.1016/j.biortech.2013.09.034
Sajjad, M., Khan, S., Ali Baig, S., Munir, S., Naz, A., Ahmad, S. S. & Khan, A. (2017). Removal of potentially toxic elements from aqueous solutions and industrial wastewater using activated carbon. Water Science and Technology, 75(11), 2571-2579. https://doi.org/10.2166/wst.2017.130
Saraswat, S. K., Demir, M. & Gosu, V. (2020). Adsorptive removal of heavy metals from industrial effluents using cow dung as the biosorbent: Kinetic and isotherm modeling. Environmental Quality Management, 30(1), 51-60. https://doi.org/10.1002/tqem.21703
Saravanan, A., Jayasree, R., Hemavathy, R., Jeevanantham, S., Hamsini, S., Kumar, P., Yaashikaa, P., Manivasagan, V. & Yuvaraj, D. (2019). Phytoremediation of Cr (VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity. Journal of Environmental Chemical Engineering, 7(3), 103052.
Schück, M. & Greger, M. (2020). Plant traits related to the heavy metal removal capacities of wetland plants. International Journal of Phytoremediation, 22(4), 427-435. https://doi.org/10.1080/15226514.2019.1669529
Secall, P. P. (2021). Perspectiva del derecho del medio ambiente y de las políticas ambientales de la Unión Europea (Primer semestre 2021). Revista Catalana de Dret Ambiental, 12(1).
Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G. & Park, J. (2021). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/j.chemosphere.2020.128455
Shang, J., Zong, M., Yu, Y., Kong, X., Du, Q. & Liao, Q. (2017). Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. Journal of environmental management, 197, 331-337. https://doi.org/10.1016/j.jenvman.2017.03.085
Sharma, M., Singh, J., Hazra, S. & Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal, 145, 105-112. https://doi.org/10.1016/j.microc.2018.10.026
Shi, Q., Terracciano, A., Zhao, Y., Wei, C., Christodoulatos, C. & Meng, X. (2019). Evaluation of metal oxides and activated carbon for lead removal: Kinetics, isotherms, column tests, and the role of co-existing ions. Science of the Total Environment, 648, 176-183.
Simeonov, L. I., Kochubovski, M. V. & Simeonova, B. G. (2010). Environmental heavy metal pollution and effects on child mental development: Risk assessment and prevention strategies. Springer.
Singh, J., Sharma, M. & Basu, S. (2018). Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: Kinetic and equilibrium modelling. Advanced Powder Technology, 29(9), 2268-2279.
Singh, R., Venkatesh, A., Syed, T. H., Reddy, A., Kumar, M. & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba Coalfield, Central India. Environmental Earth Sciences, 76(16), 1-17.
Sivakumar, D., Nouri, J., Modhini, T. M. & Deepalakshmi, K. (2018). Nickel removal from electroplating industry wastewater: A bamboo activated carbon. Global Journal of Environmental Science and Management, 4(3), 325-338.
Song, Y., Kirkwood, N., Maksimović, Č., Zheng, X., O’Connor, D., Jin, Y. & Hou, D. (2019). Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Science of the Total Environment, 663, 568-579.
Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.
Sulejmanović, J., Memić, M., Šehović, E., Omanović, R., Begić, S., Pazalja, M., Ajanović, A., Azhar, O. & Sher, F. (2022). Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water. Chemosphere, 296, 133971.
Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H. & Alam, S. N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6, 100382.
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Frontiers in plant science, 9, 1476.
Tshamala, A. K., Musala, M. K., Kalenga, G. K. & wa Mumapanda, H. D. (2021). Assessment of Surface Water Quality in Kakanda: Detection of Pollution from Mining Activities. Journal of Environmental Protection, 12(9), 561-570.
Tuas, M. A. & Masduqi, A. L. I. (2019). Removal of copper content in jewelry industry wastewater using commercial activated carbon. Pollution Research, 38, S53-S58.
Tuomikoski, S., Runtti, H., Romar, H., Lassi, U. & Kangas, T. (2021). Multiple heavy metal removal simultaneously by a biomass‐based porous carbon. Water Environment Research, 93(8), 1303-1314.
Ukah, B., Egbueri, J., Unigwe, C. & Ubido, O. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291-303.
Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G. & Zada, A. (2019). The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells. Soil and Water Research, 15(1), 30-37.
Upadhyay, A. K., Singh, R. & Singh, D. P. (2019). Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment: Springer.
Vardhan, K. H., Kumar, P. S. & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197.
Vareda, J. P., Valente, A. J. & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of environmental management, 246, 101-118.
Vázquez-Núñez, E., Molina-Guerrero, C. E., Peña-Castro, J. M., Fernández-Luqueño, F. & de la Rosa-Álvarez, M. (2020). Use of nanotechnology for the bioremediation of contaminants: A review. Processes, 8(7), 826.
Vélez-Pérez, L. S., Ramírez-Nava, J., Hernández-Flores, G., Talavera-Mendoza, O., Escamilla-Alvarado, C., Poggi-Varaldo, H. M., Solorza-Feria, O. & López-Díaz, J. A. (2020). Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells. International Journal of Hydrogen Energy, 45(26), 13757-13766. https://doi.org/10.1016/j.ijhydene.2019.12.037
Verma, B. & Balomajumder, C. (2020). Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation. Bulletin of the Chemical Society of Ethiopia, 34(1), 67-74.
Wan, Z. & Li, K. (2018). Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption. Chemosphere, 194, 370-380. https://doi.org/10.1016/j.chemosphere.2017.11.181
Wang, Y., Li, H. & Lin, S. (2022). Advances in the Study of Heavy Metal Adsorption from Water and Soil by Modified Biochar. Water, 14(23), 3894.
WHO, G. (2017). Guidelines for drinking-water quality. World Health Organization, 216, 303-304.
Wu, X., Li, C., Lv, Z., Zhou, X., Chen, Z., Jia, H., Zhou, J., Yong, X., Wei, P. & Li, Y. (2020). Positive effects of concomitant heavy metals and their reduzates on hexavalent chromium removal in microbial fuel cells. RSC Advances, 10(26), 15107-15115.
Wuana, R. A. & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011.
Xu, Cao, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X. & Wang, X. (2018). A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 195, 351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061
Xu, D., Zhou, B. & Yuan, R. (2019). Optimization of coagulation-flocculation treatment of wastewater containing Zn (II) and Cr (VI). 227, 052049.
Yaashikaa, P. R., Senthil Kumar, P., Mohan Babu, V. P., Kanaka Durga, R., Manivasagan, V., Saranya, K. & Saravanan, A. (2019). Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent (Pseudomonas stutzeri and acid treated Banyan tree bark). Journal of Molecular Liquids, 276, 362-370. https://doi.org/10.1016/j.molliq.2018.12.004
Yadav, A., Raj, A. & Bharagava, R. N. (2016). Detection and characterization of a multi-drug and multi-metal resistant Enterobacterium Pantoea sp. from tannery wastewater after secondary treatment process. International Journal of Plant and Environment, 2(1 and 2), 37-42.
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y., Jiang, Y. & Gao, B. (2019). Surface functional groups of carbonbased adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366, 608-621. https://doi.org/10.1016/j.cej.2019.02.119
Yi, L., Gao, B., Liu, H., Zhang, Y., Du, C. & Li, Y. (2020). Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area. International journal of environmental research and public health, 17(2), 548.
Yunus, Z. M., Al-Gheethi, A., Othman, N., Hamdan, R. & Ruslan, N. N. (2020). Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: A microstructure and techno-economic analysis. Journal of cleaner production, 251, 119738. https://doi.org/10.1016/j.jclepro.2019.119738
Yunus, Z. M., Al-Gheethi, A., Othman, N., Hamdan, R. & Ruslan, N. N. (2022). Advanced methods for activated carbon from agriculture wastes; a comprehensive review. International Journal of Environmental Analytical Chemistry, 102(1), 134-158.
Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F. & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
Zazycki, M. A., Tanabe, E. H., Bertuol, D. A. & Dotto, G. L. (2017). Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon. Journal of environmental management, 188, 18-25.
Zhang, Hao, Y., Wang, X., Chen, Z. & Li, C. (2016). Competitive Adsorption of Cadmium(II) and Mercury(II) Ions fromAqueousSolutions by Activated Carbon from Xanthoceras sorbifolia Bunge Hull. Journal of Chemistry, 2016, 4326351. https://doi.org/10.1155/2016/4326351
Zhang, Luo, J., Zhang, H., Li, T., Xu, H., Sun, Y., Gu, X., Hu, X. & Gao, B. (2022). Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: A review. Science of the Total Environment, 852, 158201. https://doi.org/10.1016/j.scitotenv.2022.158201
- Resumen visto - 341 veces
- PDF descargado - 169 veces
- HTML descargado - 28 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ambiente y Clima, 2023
Afiliaciones
Ibrahim García
Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana (InSTEC/UH), La Habana, Cuba
Michel Manduca Artiles
Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana (InSTEC/UH), La Habana, Cuba
Ulises Javier Jáuregui-Haza
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana