Tendencias en la modelación matemática de biorreactores con membranas sumergidas para el tratamiento de aguas residuales
Issue | Vol. 5 Núm. 1 (2022): Ciencia, Ambiente y Clima |
DOI | |
Publicado | jun 30, 2022 |
Estadísticas |
Resumen
En las últimas dos décadas, las tecnologías de los Biorreactores con Membranas Sumergidas han crecido exponencialmente debido a las ventajas que ofrecen sobre los procesos convencionales de tratamiento de aguas residuales, tales como: menor impacto ambiental, mejor calidad de los efluentes y un mejor control de los procesos; sin embargo, la principal desventaja de esta tecnología lo constituyen los costos asociados al proceso de colmatación de la membrana. La experimentación en estos sistemas demanda de un consumo considerable de recursos, tiempo y esfuerzos, razón por la cual la modelación matemática constituye una alternativa para la optimización de estos sistemas con un considerable ahorro de recursos y de tiempo. En el presente trabajo se realiza un análisis de la evolución de la modelación matemática de esos sistemas, específicamente de los modelos que integran los procesos biológicos con los procesos de filtración. Estos modelos integrados están constituidos por una versión extendida de los modelos de lodos activados (ASM), enlazados con modelos empíricos y/o determinísticos que describen la deposición de lodo sobre la membrana, que permiten predecir el comportamiento de la presión transmembranal. El enlace entre el sistema biológico y el sistema de colmatación de la membrana se realiza teniendo en cuenta la influencia de los sólidos suspendidos totales y de las sustancias poliméricas extracelulares solubles y enlazadas al flóculo en el proceso de colmatación de la membrana.
Aquino, S. F., & Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering Journal, 38(2), 138-146. doi: 10.1016/j.bej.2007.06.010
Baek, S. H., Jeon, S. K., & Pagilla, K. (2009). Mathematical modeling of aerobic membrane bioreactor (MBR) using activated sludge model no. 1 (ASM1). Journal of Industrial and Engineering Chemistry, 15, 835-840. doi: 10.1016/j.jiec.2009.09.009
Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M. R., & Alkasrawi, M. (2015). On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476, 40-49. doi: dx.doi.org/10.1016/j.memsci. 2014.11.010
Beun, J., Dircks, K., Van Loosdrecht, M., & Heijnen, J. (2002). Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36(5), 1167-1180. doi: 10. 1016/S0043-1354(01)00317-7
Beun, J., Paletta, F., Van Loosdrecht, M., & Heijnen, J. (2000). Stoichiometry and kinetics of poly-b-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnology and Bioengineering, 67(4), 379-389.
Bing-Jie, N., & Han-Qing, Y. (2008). Simulation of heterotrophic storage and growth processes in activated sludge under aerobic conditions. Chemical Engineering Journal, 140, 101-109. doi: 10.1016/j.cej.2007.09.017
Böhm, L., Drews, A., Prieske, H., Bérubé, P. R., & Kraume, M. (2012). The importance of fluid dynamics for MBR fouling mitigation. Bioresource Technology, 122, 50-61. doi: 10.1016/j.biortech.2012.05.069
Bolton, G., La Casse, D., & Kuriyel, R. (2006). Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids. Journal of Membrane Science, 277, 75-84. doi: 10.1016/j.memsci.2004.12.053
Bracklow, U., Drews, A., Gnirss, R., Klamm, S., Lesjean, B., Stüber, J., . . . Kraume, M. (2010). Influence of sludge loadings and types of substrates on nutrients removal in MBRs. Desalination, 250(2), 734-739. doi: 10.1016/j.desal. 2008.11.032
Brannock, M., De Wever, H., Wang, Y., & Leslie, G. (2009). Computational fluid dynamics simulations of MBRs: Inside submerged versus outside submerged membranes. Desalination, 236, 244-251. doi: 10.1016/j.desal. 2007.10.073
Brannock, M., Leslie, G., Wang, Y., & Buetehorn, S. (2010). Optimising mixing and nutrient removal in membrane bioreactors: CFD modeling and experimental validation. Desalination, 250, 815-818. doi: 10.1016/j.desal.2008. 11.048
Brepols, C., Schafer, H., & Engelhardt, N. (2010). Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications. Water Science & Technology-WST, 61(10), 2461-2468. doi: 10. 2166/wst.2010.179
Buer, T., & Cumin, J. (2010). MBR module design and operation. Desalination, 250, 1073-1077. doi: 10.1016/j.desal.2009.09.111
Carta, F., Beun, J., Van Loosdrecht, M., & Heijnen, J. (2001). Simultaneous storage and degradation of PHB and glycogen in activated sludge cultures. Water Research, 35(11), 2693-2701. doi: 10.1016/S0043-1354(00)00563-7
Carucci, A., Dionisi, D., Majone, M., Rolle, E., & Smurra, P. (2001). Aerobic storage by activated sludge on real wastewater. Water Research, 35(16), 3833-3844.
Characklis, W. G., & Marshall, K. C. (1990). Biofilms. Wiley-Interscience
Cho, B. D., & Fane, A. G. (2002). Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science, 209(2), 391-403. doi: 10.1016/S0376-7388(02)00321-6
Cho, J., Song, K.-G., & Ahn, K.-H. (2005). The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: unstirred batch cell test. Desalination, 183(1-3), 425-429. doi: 10. 1016/ j.desal.2005.05.009
Cicek, N., Franco, J. P., Suidan, M. T., Urbain, V., & Manem, J. (1999). Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high molecular weight compounds. Water Environment Research, 71(1), 64-70. doi: 10.2175/ 106143099X121481
Comte, S., Guibaud, G., & Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry, 41(4), 815-823. doi: 10.1016/j.procbio.2005.10.014
Daigger, G. T., & Grady, C. L. (1982). The dynamics of microbial growth on soluble substrates: A unifying theory. Water Research, 16(4), 365-382.
De Luca, G., Sacchetti, R., Leoni, E., & Zanetti, F. (2013). Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse. Bioresource Technology, 129, 526-531. doi: 10.1016/j.biortech.2012.11.113
Di Bella, G., Mannina, G., & Viviani, G. (2008). An integrated model for physical-biological wastewater organic removal in a submerged membrane bioreactor: Model development and parameter estimation. Journal of Membrane Science, 322(1), 1-12. doi: 10.1016/ j.memsci. 2008.05.036
Diez, V., Ezquerra, D., Cabezas, J. L., García, A., & Ramos, C. (2014). A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. Journal of Membrane Science, 453, 1-11. doi: 10.1016/j.memsci.2013.10.055
Dircks, K., Henze, M., van Loosdrecht, M. C., Mosbæk, H., & Aspegren, H. (2001). Storage and degradation of poly-β-hydroxybutyrate in activated sludge under aerobic conditions. Water Research, 35(9), 2277-2285.
Drews, A. (2010). Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363, 1-28. doi: 10.1016/j.memsci.2010. 06.046
Drews, A., Vocks, M., Bracklow, U., Iversen, V., & Kraume, M. (2008). Does fouling in MBRs depend on SMP? Desalination, 231(1-3), 141-149. doi: 10.1016/j.desal.2007.11.042
Drews, A., Vocks, M., Iversen, V., Lesjean, B., & Kraume, M. (2006). Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance. Desalination, 192(1-3), 1-9. doi: 10.1016/j.desal.2005. 04.130
Du, X., Shi, Y., Jegatheesan, V., & Haq, I. U. (2020). A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes, 10(2), 24. doi: 10.3390/membranes10020024
Fan, J., Ding, Y., Qiu, Z., Li, W., & Lu, S. (2011). Development of mechanistically based model for simulating soluble microbial products generation in an aerated/non-aerated SBR. Bioprocess and biosystems engineering, 34(9), 1151. doi: 10.1007/s00449-011-0566-3
Fan, J., Vanrolleghem, P. A., Lu, S., & Qiu, Z. (2012). Modification of the kinetics for modeling substrate storage and biomass growth mechanism in activated sludge system under aerobic condition. Chemical engineering science, 78, 75-81. doi: 10.1016/j.ces.2012.05.004
Fane, A. G., Chang, S., & Chardon, E. (2002). Submerged hollow fibre membrane module - design options and operational considerations. Desalination, 146, 231-236.
Fenu, A., Guglielmi, G., Jimenez, J., Spèrandio, M., Saroj, D., Lesjean, B., . . . Nopens, I. (2010a). Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water Research, 44, 4272-4294. doi: 10.1016/j.watres.2010.06.007
Fenu, A., Roels, J., Wambecq, T., De Gussem, K., Thoeye, C., De Gueldre, G., & Van De Steene, B. (2010b). Energy audit of a full scale MBR system. Desalination, 262, 121-128. doi: 10.1016/j.desal.2010.05.057
Ferrero, G., Rodríguez-Roda, I., & Comas, J. (2012). Automatic control systems for submerged membrane bioreactors: A state-of-the-art review. Water Research, 46, 3421-3433. doi: 10.1016/j.watres.2012.03.055
Friha, I., Bradai, M., Johnson, D., Hilal, N., Loukil, S., Amor, F. B., . . . Sayadi, S. (2015). Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. Journal of Environmental Management, 160, 184-192. doi: dx.doi.org/10.1016/j.jenvman.2015.06.00
Geng, Z., & Hall, E. R. (2007). A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. Water Research, 41(19), 4329-4338. doi: 10.1016/j.watres.2007.07.007
González-Hernández, Y., Jáuregui Haza, U. J., Albasi, C., & Alliet, M. (2016). Understanding the influence of operating parameters through in silico optimization of energy consumption of submerged membrane bioreactor for urban wastewater treatment. Desalination and Water Treatment, 57(35), 16363-16375. doi: 10.1080/19443994.2015.1081631
González-Hernández, Y., Schetrite, S., Albasi, C., Alliet, M., & Jáuregui Haza, U. J. (2019). Stoichiometry and kinetics of hospital wastewater treatment in a submerged membrane bioreactor. Desalination and Water Treatment, 164, 18-30. doi: 10.5004/dwt.2019.24392
González-Zarragoitia, A., Schetrite, S., Alliet, M., Jauregui-Haza, U. J., & Albasi, C. (2008). Modelling of submerged membrane bioreactor: Conceptual study about link between activated slugde biokinetics, aeration and fouling process. Journal of Membrane Science, 325, 612-624. doi: 10.1016/j.memsci.2008. 08.037
González-Zarragoitia, A., Schetrite, S., Jauregui-Haza, U. J., & Albasi, C. (2009). Dynamical Modelling and Simulation of Wastewater Filtration Process by Submerged Membrane Bioreactors. International Journal of Chemical Reactor Engineering, 7(29), 1-20. doi: 10.2202/1542-6580.1856
Goswami, L., Kumar, R. V., Borah, S. N., Manikandan, N. A., Pakshirajan, K., & Pugazhenthi, G. (2018). Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 26, 314-328. doi: 10.1016/j.jwpe.2018.10.024
Guisasola, A., Sin, G., Baeza, J., Carrera, J., & Vanrolleghem, P. (2005). Limitations of ASM1 and ASM3: a comparison based on batch oxygen uptake rate profiles from different full-scale wastewater treatment plants. Water Science and Technology, 52(10-11), 69-77. doi: 10.2166/wst.2005.0680
Henze, M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing.
Henze, M., Grady Jr, C. P. L., Gujer, W., Van Loosdrecht, M. C. M., & Matsuo, T. (1987). Activated sludge model no. 1. London: IAWPRC.
Hoinkis, J., Deowan, S. A., Panten, V., Figolic, A., Huang, R. R., & Drioli, E. (2012). Membrane Bioreactor (MBR) Technology – a Promising Approach for Industrial Water Reuse. Procedia Engineering, 33, 234-241. doi: 10.1016/j.proeng.2012.01.1199
Hsieh, K. M., Murgel, G. A., Lion, L. W., & Shuler, M. L. (1994). Interactions of microbial biofilms with toxic trace metals: 1. Observation and modeling of cell growth, attachment, and production of extracellular polymer. Biotechnology and Bioengineering, 44(2), 219-231.
Jang, N., Ren, X., Cho, J., & Kim, I. S. (2006). Steady-state modeling of bio-fouling potentials with respect to the biological kinetics in the submerged membrane bioreactor (SMBR). Journal of Membrane Science, 284(1), 352-360. doi: 10.1016/j.memsci.2006.08.001
Janus, T. (2014). Integrated mathematical model of a MBR reactor including biopolymer kinetics and membrane fouling. Procedia Engineering, 70, 882-891. doi: 10.1016/j.proeng.2014.02.098
Janus, T., & Ulanicki, B. (2010). Modelling SMP and EPS formation and degradation kinetics with an extended ASM3 model. Desalination, 261(1), 117-125. doi: 10.1016/j.desal.2010.05.021
Janus, T., & Ulanicki, B. (2016). Integrated benchmark simulation model of an immersed membrane bioreactor. Process Safety and Environmental Protection, 104, 24-37. doi: dx.doi.org/10.1016/j.psep.2016.08.005
Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1), 247-255.
Jeong, T.-Y., Cha, G.-C., Yoo, I.-K., & Kim, D.-J. (2007). Characteristics of bio-fouling in a submerged MBR. Desalination, 207(1-3), 107-113. doi: 10.1016/j.desal.2006.07.006
Ji, L., & Zhou, J. (2006). Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. Journal of Membrane Science, 276(1), 168-177. doi: 10.1016/j.memsci.2005.09.045
Jiang, T., Kennedy, M. D., Schepper, V. D., Nam, S.-N., Nopens, I., Vanrolleghem, P. A., & Amy, G. (2010). Characterization of soluble microbial products and their fouling impacts in membrane bioreactors. Environmental Science & Technology, 44(17), 6642-6648. doi: 10.10 21/es100442g
Jiang, T., Myngheer, S., De Pauw, D. J., Spanjers, H., Nopens, I., Kennedy, M. D., … Vanrolleghem, P. A. (2008). Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Research, 42(20), 4955-4964. doi: 10.1016/j.watres.2008.09.037
Jimenez, J., Grelier, P., Meinhold, J., & Tazi-Pain, A. (2010). Biological modelling of MBR and impact of primary sedimentation. Desalination, 250, 562-567. doi: 10.1016/j.desal. 2009.09.024
Judd, S. (2004). A review of fouling of membrane bioreactors in sewage treatment. Water Science and Technology, 49(2), 229-235.
Judd, S. (2010). The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Great Britain. Elsevier.
Judd, S. (2016). The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal, 305, 37-45. doi: 10.1016/j.cej.2015.08.141
Karahan-Gül, Ö., Van Loosdrecht, M., & Orhon, D. (2003). Modification of activated sludge model no. 3 considering direct growth on primary substrate. Water Science and Technology, 47(11), 219-225.
Katsuki, K., Hara, H., & Watanabe, Y. (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination, 178(1-3), 135-140. doi: 10.1016/ j.desal.2004.11.033
Kayaalp, N., Kinaci, C., Dizge, N., & Hamidi, N. (2014). Correlation of Filtration Resistance with Microbial Polymeric Substances Extracted from Membranes in a Submerged Membrane Bioreactor. Clean –Soil, Air, Water, 42(12), 1712-1720. doi: 10.1002/clen.201300424
Keskes, S., Hmaied, F., Gannoun, H., Bouallagui, H., Godon, J. J., & Hamdi, M. (2012). Performance of a submerged membrane bioreactor for the aerobic treatment of abattoir wastewater. Bioresource Technology, 103(1), 28-34. doi: 10.1 016/j.biortech.2011.09.063
Kim, M., & Nakhla, G. (2009). Comparative studies on membrane fouling between two membrane-based biological nutrient removal systems. Journal of Membrane Science, 331(1), 91-99. doi: 10.1016/j.memsci.2009.01.018
Kimura, K., Kakuda, T., & Iwasaki, H. (2019). Membrane fouling caused by lipopolysaccharides: A suggestion for alternative model polysaccharides for MBR fouling research. Separation and Purification Technology, 223, 224-233. doi: 10.1016/j.seppur.2019.04.059
Krishna, C., & Van Loosdrecht, M. C. (1999). Substrate flux into storage and growth in relation to activated sludge modeling. Water Research, 33(14), 3149-3161. doi: 10.1016/S0043-13 54(99)00031-7
Krzeminski, P., Leverette, L., Malamisc, S., & Katsou, E. (2017). Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527, 207-227. doi: dx.doi.org/10.1016/j.me msci.2016.12.010
Kumar, S., Groth, A., & Vlacic, L. (2014). An analytical index for evaluating manufacturing cost and performance of low-pressure hollow fibre membrane systems. Desalination, 332, 44-51. doi: 10.1016/j.desal.2013.10.013
Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), 2711-2720.
Le-Clech, P., Chen, V., & Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284, 17-53. doi: 10.1016/j.memsci. 2006.08.019
Lee, Y., Cho, J., Seo, Y., Lee, J. W., & Ahn, K.-H. (2002). Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 146(1-3), 451-457.
Li, X.-y., & Wang, X.-m. (2006). Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 278, 151-161. doi: 10.1016/j.memsci.2005. 10.051
Liang, S., Song, L., Tao, G., Kekre, K. A., & Seah, H. (2006). A modeling study of fouling development in membrane bioreactors for wastewater treatment. Water Environment Research, 78(8), 857-864. doi: 10.2175/106143005X73029
Lin, H., Wang, F., Ding, L., Hong, H., Chen, J., & Lu, X. (2011). Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment. Journal of Hazardous Materials, 192(3), 1509-1514. doi: 10.1016/j.jhazmat.2011.06.071
Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., … Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110-125. doi: 10.1016/j.memsci.2014.02.034
Liu, H., & Fang, H. H. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of biotechnology, 95(3), 249-256.
Liu, J., Wang, Z., Tang, C. Y., & Leckie, J. O. (2018). Modeling Dynamics of Colloidal Fouling of RO/NF Membranes with A Novel Collision-Attachment Approach. Environmental Science & Technology. doi: 10.1021/acs. est.7b05598
Liu, R., Huang, X., Chen, L., Wen, X., & Qian, Y. (2005). Operational performance of a bioreactor for reclamation of bath wastewater. Process Biochemistry, 40(1), 125-130. doi: 10. 1016/j.procbio.2003.11.038
Lu, S. G., Imai, T., Ukita, M., Sekine, M., Higuchi, T., & Fukagawa, M. (2001). A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Research, 35(8), 2038-2048.
Lubello, C., Caffaz, S., Gori, R., & Munz, G. (2009). A modified Activated Sludge Model to estimate solids production at low and high solids retention time. Water Research, 43, 4539-4548. doi: 10.1016/j.watres.2009.08.001
Majone, M., Dircks, K., & Beim, J. (1999). Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Water Science and Technology, 39(1), 61-73.
Mannina, G., & Cosenza, A. (2013). The fouling phenomenon in membrane bioreactors: Assessment of different strategies for energy saving. Journal of Membrane Science, 444, 332-344. doi: 10.1016/j.memsci.2013.05.047
Mannina, G., & Di Bella, G. (2012). Comparing two start-up strategies for MBRs: Experimental study and mathematical modelling. Biochemical Engineering Journal, 68, 91-103. doi: 10.1016/j.bej.2012.07.011
Mannina, G., Di Bella, G., & Viviani, G. (2010). Uncertainty assessment of a membrane bioreactor model using the GLUE methodology. Biochemical Engineering Journal, 52, 263-275. doi: 10.1016/j.bej.2010.09.001
Mannina, G., Di Bella, G., & Viviani, G. (2011). An integrated model for biological and physical process simulation in membrane bioreactors (MBRs). Journal of Membrane Science, 376, 56-69. doi: 10.1016/j.memsci.2011.04.003
Marín, E., Pérez, J. I., & Gómez, M. A. (2017). Behaviour of biopolymeric substances in the activated sludge of an MBR system working with high hydraulic retention time. Journal of Environmental Science and Health, Part A, 52(12), 1184-1193. doi: 10.1080/10934529. 2017.1356209
McArdell, C., Kovalova, L., Siegrist, H., Kienle, C., Moser, R., & Schwartz, T. (2011). Input and elimination of pharmaceuticals and disinfectants from hospital wastewater. Final project report. Duebendorf: Eawag: Das Wasserforschungs-Institut des ETH-Bereichs.
Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shind, H.-S., & Yanga, F. (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43, 1489-1512. doi: 10.1016/ j.watres.2008.12.044
Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.-S., & Chae, S.-R. (2017). Fouling in membrane bioreactors: An updated review. Water Research, 114, 151-180. doi: dx.doi.org/10.1016/j.watres.2017.02.006
Menniti, A., & Morgenroth, E. (2010). The influence of aeration intensity on predation and EPS production in membrane bioreactors. Water Research, 44, 2541-2553. doi: 10.1016/j.watres.2009.12.024
Metcalf, & Eddy. (2003). Wastewater engineering: treatment and reuse (4a ed.). New York: McGraw-Hill.
Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., Yuniarto, A., & Olsson, G. (2013). Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater. Chemical Engineering Journal, 225, 109-119. doi: 10.1016/j.cej.2013.02.131
Nagaoka, H., & Akoh, H. (2008). Decomposition of EPS on the membrane surface and its influence on the fouling mechanism in MBRs. Desalination, 231(1-3), 150-155. doi: 10.1016/j.desal.2007.12.007
Namkung, E., & Rittmann, B. E. (1986). Soluble microbial products (SMP) formation kinetics by biofilms. Water Research, 20(6), 795-806.
Navaratna, D., Shu, L., Baskaran, K., & Jegatheesan, V. (2012). Model development and parameter estimation for a hybrid submerged membrane bioreactor treating Ametryn. Bioresource Technology, 113, 191-200. doi: 10.1016/j.biortech. 2011.12.017
Nguyen, T.-T., Bui, X.-T., Luu, V.-P., Nguyen, P.-D., Guo, W., & Ngo, H.-H. (2017). Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems. Bioresource Technology, 240, 42-49. doi: 10.1016/j.biortech.2017.02.118
Ognier, S., Wisniewski, C., & Grasmick, A. (2004). Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept. Journal of Membrane Science, 229, 171-177. doi: 10.1016/j.memsci.2003.10.026
Ouarda, Y., Tiwari, B., Azaïs, A., Vaudreuil, M.-A., Ndiaye, S. D., Drogui, P., … Dubé, R. (2018). Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere, 193, 160-169. doi: 10.10 16/j.chemosphere.2017.11.010
Palani, K. N., Ramasamy, N., Palaniappan, K. V., Huh, Y. S., & Natesan, B. (2019). Development of integrated membrane bioreactor and numerical modeling to mitigate fouling and reduced energy consumption in pharmaceutical wastewater treatment. Journal of Industrial and Engineering Chemistry, 76, 150-159. doi: 10.1016/j.jiec.2019.03.028
Pan, J. R., Su, Y.-C., Huang, C., & Lee, H.-C. (2010). Effect of sludge characteristics on membrane fouling in membrane bioreactors. Journal of Membrane Science, 349(1), 287-294. doi: 10.1016/j.memsci.2009.11.055
Patsios, S., & Karabelas, A. (2011). An investigation of the long-term filtration performance of a membrane bioreactor (MBR): the role of specific organic fractions. Journal of Membrane Science, 372(1), 102-115. doi: 10.1016/j.memsci.2011.01.055
Paul, P., & Hartung, C. (2008). Modelling of biological fouling propensity by inference in a side stream membrane bioreactor. Desalination, 224(1-3), 154-159. doi: 10.1016/j.desal.2007.02.087
Quesada, I., Gonzalez, Y., Schetrite, S., Budzinski, H., Le Menach, K., Lorain, O., … Abdelaziz, D. (2015). PANACÉE: évaluation du fonctionnement d’un bioréacteur à membranes immergées traitant des effluents hospitaliers d’oncologie. Revue des sciences de l’eau/Journal of Water Science, 28(1), 1-6. doi: 10.72 02/1030001ar
Rittmann, B. E., & McCarty, P. L. (2000). Environmental biotechnology: principles and applications. Boston. Tata McGraw-Hill Education.
Rosenberger, S., Evenblij, H., Te Poele, S., Wintgens, T., & Laabs, C. (2005). The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups. Journal of Membrane Science, 263(1), 113-126. doi: 10.1016/j.memsci.2005.04.010
Rosenberger, S., & Kraume, M. (2003). Filterability of activated sludge in membrane bioreactors. Desalination, 151(2), 195-200.
Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., & Schrotter, J.-C. (2006). Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Research, 40(4), 710-720. doi: 10.1016/j.watres.2005.11.028
Santos, A., Ma, W., & Judd, S. J. (2011). Membrane bioreactors: Two decades of research and implementation. Desalination, 273, 148-154. doi: 10.1016/j.desal.2010.07.063
Saroj, D. P., Guglielmi, G., Chiarani, D., & Andreottola, G. (2008). Modeling and simulation of membrane bioreactors by incorporating simultaneous storage and growth concept: an especial attention to fouling while modeling the biological process. Desalination, 221, 475-482. doi: 10.1016/j.desal.2007.01.108
Sin, G., Van Hulle, S. W., De Pauw, D. J., Van Griensven, A., & Vanrolleghem, P. A. (2005). A critical comparison of systematic calibration protocols for activated sludge models: A SWOT analysis. Water Research, 39(12), 2459-2474. doi: 10.1016/j.watres.2005.05.006
Singh, R. P., Fu, D., Yang, J., & Xiong, J. (2019). Operational performance and biofoulants in a dynamic membrane bioreactor. Bioresource Technology, 282, 156-162. doi: 10.1016/j.biortech.2019.02.034
Song, L., Liang, S., & Yuan, L. (2007). Retarded transport and accumulation of soluble microbial products in a membrane bioreactor. Journal of Environmental Engineering, ASCE, 133(1), 36-43. doi: 10.1061/(ASCE)0733-9372(2007)133:1(36)
Stephenson, T., Judd, S., Jefferson, B., & Brindle, K. (2000). Membrane bioreactors for wastewater treatment. London: IWA Publishing.
Suh, C., Lee, S., & Cho, J. (2013). Investigation of the effects of membrane fouling control strategies with the integrated membrane bioreactor model. Journal of Membrane Science, 429, 268-281. doi: 10.1016/j.memsci.2012. 11.042
Tian, Y., Chen, L., & Jiang, T. (2011). Characterization and modeling of the soluble microbial products in membrane bioreactor. Separation and Purification Technology, 76, 316-324. doi: 10.1016/j.seppur.2010.10.022
Urase, T., Kagawa, C., & Kikuta, T. (2005). Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination, 178, 107-113. doi: 10.1016/j.desal.2004.11.031
Van Aalst-van Leeuwen, M., Pot, M., Van Loosdrecht, M., & Heijnen, J. (1997). Kinetic Modeling of Poly (-hydroxybutyrate) Production and Consumption by Paracoccus pantotrophus under Dynamic Substrate Supply. Biotechnology and Bioengineering, 55, 773-782. doi: 0006-3592/97/050773-10
Van Loosdrecht, M., & Heijnen, J. (2002). Modelling of activated sludge processes with structured biomass. Water Science and Technology, 45(6), 13-23.
Van Loosdrecht, M., Pot, M., & Heijnen, J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 35(1), 41-47.
Verrecht, B., Maere, T., Benedetti, L., Nopens, I., & Judd, S. (2010). Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse. Water Research, 44, 4047-4056. doi: 10.1016/j.watres.2010.05.015
Wang, X.-m., & Li, X.-y. (2014). Modeling of the initial deposition of individual particles during the cross-flow membrane filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 440, 91-100. doi: 10.1016/j.colsurfa.2012.10.033
Wang, Y., Brannock, M., Cox, S., & Leslie, G. (2010). CFD simulations of membrane filtration zone in a submerged hollow fibre membrane bioreactor using a porous media approach. Journal of Membrane Science, 363, 57-66. doi: 10.1016/j.memsci.2010.07.008
Wang, Z., Wu, Z., & Tang, S. (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43(9), 2504-2512. doi: 10.1016/j.watres.2009.02.026
Wibisono, Y., Cornelissen, E. R., Kemperman, A. J. B., van der Meer, W. G. J., & Nijmeijer, K. (2014). Two-phase flow in membrane processes: A technology with a future. Journal of Membrane Science, 453, 566-602. doi: 10. 1016/j.memsci.2013.10.072
Wintgens, T., Rosen, J., Melin, T., Brepols, C., Drensla, K., & Engelhardt, N. (2003). Modelling of a membrane bioreactor system for municipal wastewater treatment. Journal of Membrane Science, 216(1-2), 55-65. doi: 10. 1016/S0376-7388(03)00046-2
Witzig, R., Manz, W., Rosenberger, S., Krüger, U., Kraume, M., & Szewzyk, U. (2002). Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Research, 36(2), 394-402. doi: 10.1016/S0043-1354(01)00221-4
Wu, J., He, C., Bi, D., Yu, J., & Zhang, Y. (2013). A bio-cake model for the soluble COD removal by the back-transport, adsorption and biodegradation processes in the submerged membrane bioreactor. Desalination, 322, 1-12. doi: 10.1016/j.desal.2013.04.026
Wu, J., He, C., Jiang, X., & Zhang, M. (2011). Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms. Desalination, 279, 127-134. doi: 10.1016/j.desal.2011.05.069
Wu, J., He, C., & Zhang, Y. (2012). Modeling membrane fouling in a submerged membrane bioreactor by considering the role of solid, colloidal and soluble components. Journal of Membrane Science, 397-398, 102-111. doi: 10. 1016/j.memsci.2012.01.026
Wu, J., & Huang, X. (2009). Effect of mixed liquor properties on fouling propensity in membrane bioreactors. Journal of Membrane Science, 342(1), 88-96. doi: 10.1016/j.mem sci.2009.06.024
Wu, J., Le-Clech, P., Stuetz, R. M., Fane, A. G., & Chen, V. (2008). Effects of relaxation and backwashing conditions on fouling in membrane bioreactor. Journal of Membrane Science, 324(1), 26-32. doi: 10.1016/j.mem sci.2008.06.057
Yamato, N., Kimura, K., Miyoshi, T., & Watanabe, Y. (2006). Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials. Journal of Membrane Science, 280(1), 911-919. doi: 10. 1016/j.memsci.2006.03.009
Yao, M., Ladewig, B., & Zhang, K. (2011). Identification of the change of soluble microbial products on membrane fouling in membrane bioreactor (MBR). Desalination, 278, 126-131. doi: 10.1016/j.desal.2011.05.012
Yigit, N. O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N., & Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231, 124-132. doi: 10.1016/j.desal.2007.11.041
Zanetti, F., De Luca, G., & Sacchetti, R. (2010). Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresource Technology, 101, 3768-3771. doi: 10.1016/j.biortech.2009. 12.091
Zarragoitia-González, A. (2009). Desarrollo de modelos dinámicos para la simulación y optimización de biorreactores con membrana sumergida para el tratamiento de aguas residuales (Ph.D.). University of Toulouse, Toulouse, France.
Zuthi, M. F. R., Guo, W., Ngo, H. H., Nghiem, D. L., Hai, F. I., Xia, S., … Liu, Y. (2017). New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor. Bioresource Technology, 238, 86-94. doi: 10.1016/j.biortech.2017.04.006
Zuthi, M. F. R., Ngo, H. H., & Guo, W. S. (2012). Modelling bioprocesses and membrane fouling in membrane bioreactor (MBR): A review towards finding an integrated model framework. Bioresource Technology, 122, 119-129. doi: 10. 1016/j.biortech.2012.04.090
Zuthi, M. F. R., Ngo, H. H., & Guo, W. S. (2013). A review towards finding a simplified approach for modelling the kinetics of the soluble microbial products (SMP) in an integrated mathematical model of membrane bioreactor (MBR). International Biodeterioration & Biodegradation, 30, 1-8. doi: 10.1016/j.ibiod.2013.03.032
- Resumen visto - 345 veces
- PDF descargado - 178 veces
- HTML descargado - 40 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ambiente y Clima, 2022
Afiliaciones
Ulises Javier Jáuregui-Haza
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Yusmel González Hernández
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana