Umpolung in reactions catalyzed by thiamine pyrophosphate dependent enzymes
Issue | Vol. 2 Núm. 2 (2019): Ciencia, Ambiente y Clima |
DOI | |
Publicado | dic 13, 2019 |
Estadísticas |
Resumen
El intercambio temporal del carácter electrofílico/nucleofí-lico de un átomo mediante manipulación química, es cono-cido con el vocablo alemán de umpolung. Esta inversión de polaridad permite explorar nuevas posibilidades sintéticas que no pueden llevarse a cabo partiendo de la reactividad normal de los grupos funcionales. Se trata de una herra-mienta sintética útil, que también es utilizada por ciertas enzimas en determinadas reacciones bioquímicas que tienen lugar en las células. Las enzimas dependientes del pirofosfato de tiamina, como la piruvato descarboxilasa, la piruvato deshidrogenasa, la α-cetoglutarato deshidrogenasa, la deshidrogenasa de α-cetoácidos de cadena ramificada y la transcetolasa, proporcionan ejemplos claros de umpolungen reacciones celulares. En esta revisión, tras una discusión sobre el significado del término umpolung encontrado en la literatura química, se analizan los mecanismos de reacción y el significado bioquímico de las transformaciones llevadas a cabo por las enzimas mencionadas.
Ævarsson, A. C., Chuang, J. L., Wynn, R. M., Turley, S., Chuang, D. T. & Hol, W. G. (2000). Crystal structure of human branched-chain α-keto acid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure, 8(3), 277-291. doi: http://doi.org/10.1016/s0969-2126(00)00105-2
Agyei-Owusu, K. & Leeper, F. J. (2009). Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches. FEBS Journal, 276(11), 2905-2916. doi: http://doi.org/10.1111/j.1742-%204658.2009.07018.x
Amyes, T. L. & Richard, J. P. (2017). Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites. Synlett: accounts and rapid communications in synthetic organic chemistry, 28(12), 2407-2421. doi: http://doi.org/10.1055/s-0036-1588778
Balakrishnan, A., Gao, Y., Moorjani, P., Nemeria, N.S., Tittmann, K. & Jordan, F. (2012). Bifunctionality of the Thiamin Diphosphate Cofactor: Assignment of Tautomeric/Ionization States of the 4′-Aminopyrimidine Ring When Various Intermediates Occupy the Active Sites during the Catalysis of Yeast Pyruvate Decarboxylase. Journal of the American Chemical Society, 134(8), 3873-3885. doi: http://doi.org/10.1021/ja211139c
Boluda, C. J., López, H., Pérez, J. A. & Trujillo, J. M. (2005). First Total Synthesis of Justicidone, a p-Quinone-Lignan Derivative from Justicia hyssopifolia. Chemical and Pharmaceutical Bulletin, 53(8), 930-933. doi: http://doi.org/10.1248/cpb.53.930
Breslow, R. (1958). On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems. Journal of the American Chemical Society, 80(14), 3719-3726. doi: http://doi.org/10.1021/%20ja01547a064
Broderick, J. B. (2001). Coenzymes and Cofactors. Encyclopedia of Life Sciences, 1-11, doi: http://doi.org/10.1038/npg.els.0000631
Cooper, A. J. L., Ginos, J. Z. & Meister, A. (1983). Synthesis and Properties of the α-keto acids. Chemical Reviews, 83(3), 321-358, doi: http://doi.org/10.1021/cr00055a004
Corey, E. J. & Seebach, D. (1965). Carbanions of 1,3-Dithianes. Reagent for C-C Bond Formation by Nucleophilic Displacement and Carbonyl Addition. Angewandte Chemie International Edition in English, 4(12), 1075- 1077. doi: http://doi.org/10.1002/anie.196510752
Eram, M. S. & Ma, K. (2013). Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules, 3(3), 578-596. doi: http://doi.org/10.3390/biom3030578
Erdik, E. & Ay, M. (1989). Electrophilic Amination of Carbanions. Chemical Reviews, 89(8), 1947- 1980, doi: http://doi.org/10.1021/cr00098a014
Eymur, S., Göllü, M. & Tanyeli, C. (2013). Umpolung strategy: Advances in catalytic C-C bond formations. Turkish Journal of Chemistry, 37(4), 586-609. doi: http://doi.org/10.3906/kim-1303-85.
Fullam, E., Pojer, F., Bergfors, T., Jones, T. A. & Cole, S. T. (2012). Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biology, 2(1), 110026-110038. doi: http://doi.org/10.1098/rsob.110026
Faber, K. (2018). Biotransformations in Organic Chemistry: A Textbook. (pp. 205-206). (7th ed). Berlin, Alemania: Springer.
Fiedler, E., Thorell, S., Sandalova, T., Golbik, R., König, S. & Schneider, G. (2002). Snapshot of a key intermediate in enzymatic thiamine catalysis: Crystal structure of the α-carbanion of (α, β-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 99(2), 591-595. doi: http://doi.org/10.1073/pnas.022510999
Fries, M., Jung, H. & Perham, R. N. (2003). Reaction Mechanism of the Heterotetrameric (α2 β2 ) E1 Component of 2-Oxo Acid Dehydrogenase Multienzyme Complexes. Biochemistry, 42(23), 6996-7002. doi: http://doi.org/10.1021/bi027397z
González, A. G., Pérez, J. P. & Trujillo, J. M. (1978). Synthesis of two arylnaphthalene lignans. Tetrahedron, 34, 1011-1013. doi: http://doi.org/10.1016/0040-4020(78)88156-3
Guérard, K. C., Sabot, C., Beaulieu, M. A., Giroux, M. A. & Canesi, S. (2010). ‘Aromatic ring umpolung’, a rapid access to the main core of several natural products. Tetrahedron, 66(31), 5893- 5901. doi: http://doi.org/10.1016/j.tet.2010.03.09
Gulyás-Fekete, G., Boluda, C. J., Westermann, B. & Wessjohann, L. A. (2013). Anti-FriedelCrafts-Type substitution To Form Biaryl Linkages. Synthesis, 45(21), 3038-3043. doi: http://doi.org/10.1055/s-0033-1339682
Hanson, R. W. (1987). Decarboxylation of α-keto acids. Journal of Chemical Education, 64(7), 591-595. doi: http://doi.org/10.1021/ed064p591
Heidari, Y., Howe, G. W. & Kluger, R. (2016). The reactivity of lactyl-oxythiamine implies the role of the amino-pyrimidine in thiamin catalyzed decarboxylation. Bioorganic Chemistry, 69, 153- 158. doi: http://doi.org/10.1016/j.bioorg.2016.10.008
Heffelfinger, S. C., Sewell, E. T. & Danner, D. J. (1983). Identification of Specific Subunits of Highly Purified Bovine Liver Branched-Chain Ketoacid Dehydrogenase. Biochemistry, 22(24), 5519-5522. doi: http://doi.org/10.1021/bi00293a011
Johnson, M. T., Yang, H. S. & Patel, M. S. (2000). Targeting E3 Component of α-Keto Acid Dehydrogenase Complexes. Methods in Enzymology, 324, 465-476. Amsterdam: Elsevier. doi: http://doi.org/10.1016/s0076-6879(00)24254-7
Jong, L., Meng, Y., Dent, J. & Hekimi, S. (2004). Thiamine Pyrophosphate Biosynthesis and Transportin the Nematode Caenorhabditis elegans. Genetics Society of America, 168(2), 845- 854. doi: http://doi.org/10.1534/genetics.104.028605
Kluger, R. (1987). Thiamin diphosphate: A mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chemical Reviews, 87(5), 863-876. doi: http://doi.org/10.1021/cr00081a001
Li, T., Huo, L., Pulley, C. & Liu, A. (2012). Decarboxylation mechanisms in biological system. Bioorganic Chemistry, 43, 2-14. doi: http://doi.org/10.1016/j.bioorg.2012.03.001
Lonsdale, D. (2006). A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its Derivatives. Evidence-Based Complementary and Alternative Medicine, 3(1), 49-59. doi: http://doi.org/10.1093/ecam/nek009
Miyamoto, K. & Ohta, H. (2007). Enzymatic decarboxylation of synthetic compounds. Future Directions in Biocatalysis, 305-343. doi: http://doi.org/10.1016/B978-044453059-2/50013-3
Mizuhara, S., Tamura, R. & Arata, H. (1951). On the Mechanism of Thiamine Action. II. Proceedings of the Japan Academy, 27(6), 302-308.
Mosbacher, T. G., Mueller, M. & Schulz, G. E. (2005). Structure and mechanism of the ThDPdependent benzaldehyde lyase from Pseudomonas fluorescens. FEBS Journal, 272(23), 6067-6076. doi: http://doi.org/10.1111/j.1742-4658.2005.04998.x
National Center for Biotechnology Information. PubChem Database. (2019, September 9). Thiamine diphosphate, CID=1132. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Thiamine-diphosphate
Nelson, D., Cox, M. & Lehninger, A. (2013). Lehninger Principles of Biochemistry, (513; 565; 605; 635), (6 ed). New York, USA: W.H. Freeman.
Nemeria, N. S., Chakraborty, S., Balakrishnan, A. & Jordan, F. (2009). Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. FEBS Journal, 276(9), 2432-3446. doi: http://doi.org/10.1111/j.1742-4658.2009.06964.x
Noda, Y. & Watanabe, M. (2002). Synthesis of Both Enantiomers of Flavanone and 2-Methylchromanone. Helvetica Chimica Acta, 85(10), 3473-3477. doi: 10.1002/ 1 5 2 2 - 2 6 7 5 ( 2 0 0 2 1 0 ) 8 5 : 1 0 < 3 4 7 3 : AID-HLCA3473>3.0.CO;2-7
Prier, C. K. & Arnold, F. H. (2015). Chemomimetic Biocatalysis: Exploiting the Synthetic Potential of Cofactor-Dependent Enzymes to Create New Catalysts. Journal of the American Chemical Society, 137(44), 13992-14006. doi: http://doi.org/10.1021/%20jacs.5b09348.
Schenk, G., Duggleby, R. G. & Nixon, P. F. (1998). Properties and functions of the thiamin diphosphate dependent enzyme transketolase. The International Journal of Biochemistry & Cell Biology, 30(12), 1297–1318. doi: http://doi.org/10.1016/S1357-2725(98)00095-8
Schneider, G. & Lindqvist, Y. (1993). Enzymatic thiamine catalysis: Mechanistic implications from the three-dimensional structure of transketolase. Bioorganic Chemistry, 21(1), 109–117. doi: http://doi.org/10.1006/bioo.1993.1012
Seebach, D. & Corey, E. J. (1975). Generation and Synthetic Applications of 2-lithio-1,3-dithianes. The Journal of Organic Chemistry, 40(2), 231-237. doi: http://doi.org/10.1021/jo00890a018
Seebach, D. (1979). Methods of Reactivity Umpolung. Angewandte Chemie International Edition in English, 18(4), 239-258. doi: https://doi.org/10.1002/anie.197902393
Shen, B., Makley, D. M. & Johnston, J. N. (2010). ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis. Nature, 465(7301), 1027-1032. doi: https://doi.org/10.1038/nature09125
Smith, A. B., Lin Q., Doughty, V. A., Zhuang, L., McBriar, M. D., Kerns, J. K., Brook, C. S., Murase, N. & Nakayama, K. (2001). The Spongistatins: Architecturally Complex Natural Products—Part Two: Synthesis of the C (29-51) Subunit, Fragment Assembly, and Final to (+)-Spongistatin 2. Angewandte Chemie International Edition, 40(1), 196–199. doi: 10.1002/1521-3773(20010105)40:1<196:aid-anie196>3.0.co;2-t
Tittmann, K., Golbik, R., Uhlemann, K., Khailova, L., Schneider, G., Patel, M., Jordan, F., Chipman, D., Duggleby, R. & Hübner, G. (2003). NMR Analysis of Covalent Intermediates in Thiamin Diphosphate Enzymes. Biochemistry, 42(26), 7885-7891. doi: https://doi.org/10.1021/bi034465o
Tylicki, A., Lotowski, Z., Siemieniuk, M. & Ratkiewicz, A. (2018). Thiamine and selected thiamine antivitamins-biological activity and methods of synthesis. Bioscience Reports, 38(1), 1-23. doi: https://doi.org/10.1042/BSR20171148
Wittig, G., Davis, P. & Koenig, G. (1951). Phenanthrensynthesen über intraionische Isomerisationen. Chemische Berichte, 84(7), 627-632. doi: https://doi.org/10.1002/cber.19510840713.
Wynn, R.M., Daviel, J. R., Mengl, M., & Chuang, D.T. (1996). Structure, function and assembly of mammalian branchedchain α-keto acid dehydrogenase complex. In: Patel M.S., Roche T.E., Harris R.A. (eds) Alpha-Keto Acid Dehydrogenase Complexes. (pp. 101-117). Switzerland: Birkhäuser Basel. doi: https://doi.org/10.1007/978-3-0348-8981-0.
Wynn, R., Kato, M., Machius, M., Chuang, J. L., Li, J., Tomchick, D. R., & Chuang, D. T. (2004). Molecular Mechanism for Regulation of the Human Mitochondrial BranchedChain α-Keto acid Dehydrogenase Complex by Phosphorylation. Structure, 12(12), 2185- 2196. doi: https://doi.org/10.1016/j.str.2004.09.013
Yus, M., Nájera, C. & Foubelo, F. (2003). The role of 1,3-dithianes in natural product synthesis. Tetrahedron, 59(33), 6147-6212. doi: https://doi.org/10.1016/S0040-4020(03)00955-4
Ziegler, F., E., & Schwartz, J.A. (1978). Synthetic Studies on Lignan Lactones: Aryl Dithiane Route to (± )-Podorhizoll and (±)-Isopodophyllotoxone and Approaches to the Stegane Skeleton. Journal of Organic Chemistry, 43(5), 985-991.
- Resumen visto - 1189 veces
- PDF descargado - 419 veces
- HTML descargado - 608 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ambiente y Clima, 2019
Afiliaciones
Carlos José Boluda
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Carolina Juncá
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Emily Soto
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Darah de la Cruz
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Anny Peña
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana