Bioprospección de lectinas en plantas de la familia rubiaceae endémicas de la República Dominicana
Issue | Vol. 7 Núm. 1 (2024): Ciencia, Ambiente y Clima |
DOI | |
Publicado | jun 30, 2024 |
Estadísticas |
Resumen
Las lectinas son proteínas que se unen específicamente a carbohidratos de manera reversible y no catalítica. Debido a sus múltiples funciones biológicas dentro de los organismos, son de amplio interés en la biotecnología. Esta investigación tuvo por objetivo la detección y caracterización de lectinas en tres especies endémicas de la República Dominicana, pertenecientes a la familia Rubiaceae. De estas especies, se detectó al menos una posible lectina en las hojas de Stevensia grandiflora, fuertemente aglutinante para todos los grupos sanguíneos humanos y de forma leve para la levadura Saccharomyces cerevisiae. La lectina mostró estabilidad a 100°C, tener carácter glicoproteico, precipitar a concentraciones de 40% con sulfato de amonio y ser específica para los disacáridos sacarosa y lactosa. Además, mostró cierta especificidad frente a varios monosacáridos, característica semejante a las lectinas con dominios proteicos de leguminosas. Por otro lado, las bandas visualizadas en la electroforesis SDS-PAGE, en condiciones reductoras, demostraron la posible estructura monomérica o dimérica de la(s) lectina(s) detectada(s). Estos resultados representan nuevas lectinas para la tribu de rubiáceas Rondeletieae, con el potencial de servir como herramientas en biotecnología y medicina.
Alarcón-Aparicio, E. (2005). Obtención y caracterización de las propiedades biofuncionales de lectinas de mango (Mangífera índica cv, manila) [Tesis de maestría, Universidad Veracruzana]. https://cdigital.uv.mx/bitstream/handle/123456789/46775/AlarconAparicioEdna.pdf?sequence=2&isAllowed=y
Asseleih, L. C., Plumbley, R. A., y Hylands, P. J. (1989). Purification and partial characterization of a hemagglutinin from seeds of Jatropha curcas. Journal of Food Biochemistry, 13(1), 1-20. https://doi.org/10.1111/j.1745-4514.1989.tb00381.x
Ayouba, A., Causse, H., Van Damme, E. J. M., Peumans, W. J., Bourne, Y., Cambillau, C., y Rougé, P. (1994). Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan. Biochemical Systematics and Ecology, 22(2), 153–159. https://doi.org/10.1016/0305-1978(94)90005-1
Bezerra, R., Targon, P., Chambergo, F., Napoleão, T., Guedes, P., y Vieira, H. et al. (2018). Purification and characterization of a lectin with refolding ability from Genipa americana bark. International Journal of Biological Macromolecules, 119, 517-523. https://doi.org/10.1016/j.ijbiomac.2018.07.178
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Büker, E., y Saraçoğlu, I. (2021). Antiviral Potential of Medicinal Plants and Plant Lectins: Use in COVID-19 Pandemic Era. Journal of Pharmaceutical Research International, 289-299. https://doi.org/10.9734/jpri/2021/v33i28a31535
Chen, L., y Li, F. (2013). Structural analysis of the evolutionary origins of influenza virus hemagglutinin and other viral lectins. Journal of Virology, 87(7), 4118–4120. https://doi.org/10.1128/jvi.03476-12
Coelho, M., Macedo, M., Marangoni, S., Silva, D., Cesarino, I., y Mazzafera, P. (2010). Purification of Legumin-Like Proteins from Coffea arabica and Coffea racemosa Seeds and Their Insecticidal Properties toward Cowpea weevil (Callosobruchus maculatus) (Coleoptera: Bruchidae). Journal of Agricultural and Food Chemistry, 58(5), 3050-3055. https://doi.org/10.1021/jf9037216
Dang, L. y Van Damme, E. (2015). Toxic proteins in plants. Phytochemistry, 117, 51-64. https://doi.org/10.1016/j.phytochem.2015.05.020
De Coninck, T., y Van Damme, E. (2021). Review: The multiple roles of plant lectins. Plant Science, 313, 111096. https://doi.org/10.1016/j.plantsci.2021.111096
Dias, R., Machado, L., Migliolo, L., y Franco, O. (2015). Insights into Animal and Plant Lectins with Antimicrobial Activities. Molecules, 20(1), 519-541. https://doi.org/10.3390/molecules20010519
Dos Santos, V. B. (2003). Purificação parcial de uma lectina da raiz de Guettarda platypoda [Tesis de maestría, Universidad Federal de Pernambuco]. https://repositorio.ufpe.br/handle/123456789/1894
Gray, A., y Flatt, P. (1999). Insulin-secreting activity of the traditional Antidiabetic Plant Viscum album (Mistletoe). Journal of Endocrinology, 160(3), 409–414. https://doi.org/10.1677/joe.0.1600409
Hamid, R., Masood, A., Wani, I.H., y Rafiq, S. (2013). Lectins: proteins with diverse applications. Journal of Applied Pharmaceutical Science, 3(4), 93–103.
Hidalgo, D. J. (2017). Detección, purificación y caracterización parcial de lectinas presentes en algas marinas colombianas [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/62217
Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
Laemmli, U. K. (1970). Cleavage of structural proteins during the Assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
Lagarda-Diaz, I., Guzman-Partida, A., y Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences, 18(6), 1242. https://doi.org/10.3390/ijms18061242
Liogier, A. H. (1995). La Flora de la Española VII. Universidad Central del Este (UCE) Vol. LXXI Serie Científica 28. Santo Domingo, República Dominicana. Editora Taller C. por A. pp. 207-491.
Liogier, A. H. (2009). Flora de la Española Suplemento. Jardín Botánico Nacional Dr. Rafael MA. Moscoso. Santo Domingo, República Dominicana. pp. 138-151.
Loh, S., Park, J., Cho, E., Nah, S. y Kang, Y., (2017). Animal lectins: potential receptors for ginseng polysaccharides. Journal of Ginseng Research, 41(1), pp.1-9.
López-Hidalgo, C., Meijón, M., Lamelas, L., y Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/pce.14007
Mauliku, N. (2021). The Anti-tubercular Activity of Noni Fruitsto Inhibition Growth of Multi Drug Resistant-Tuberculosis Bacteria. Kne Life Sciences, 979-990. https://doi.org/10.18502/kls.v6i1.8774
McPherson, A., Hankins, C. N., y Shannon, L. (1987). Preliminary X-ray diffraction analysis of crystalline lectins from the seeds and leaves of Sophora japonica. Journal of Biological Chemistry, 262(4), 1791–1794. https://doi.org/10.1016/s0021-9258(19)75708-1
Mirelman, D., Altmann, G., y Eshdat, Y. (1980). Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts. Journal of clinical microbiology, 11(4), 328-331.
Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., y Dhiman, R. (2019). Structure-function and application of plant lectins in Disease Biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/j.fct.2019.110827
Moonens, K., y Remaut, H. (2017). Evolution and structural dynamics of bacterial glycan binding adhesins. Current Opinion in Structural Biology, 44, 48-58. https://doi.org/10.1016/j.sbi.2016.12.003
Naik, S., y Kumar, S. (2020). Biochemical characterization of lactose binding Entadin lectin from Entada rheedii seeds with cytotoxic activity against cancer cell lines. ACS Omega, 5(27), 16430–16439. https://doi.org/10.1021/acsomega.0c00577
Naithani, S., Komath, S., Nonomura, A., y Govindjee, G. (2021). Plant lectins and their many roles: Carbohydrate-binding and beyond. Journal of Plant Physiology, 266, 153531. https://doi.org/10.1016/j.jplph.2021.153531
Nanne-Echandi, C. I. (1998). Aislamiento, purificación y caracterización de una lectina de la semilla del poro (Erythrina costaricensis) [Tesis de maestría, Universidad de Costa Rica]. http://repo.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/2032/1/11201.pdf
Nielsen, S. S. (2009). Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual, 47–53. https://doi.org/10.1007/978-1-4419-1463-7_6
Nova, I., Silva, P., Almeida, W., Silva, T., Camaroti, J., y Silva, P. et al. (2020). Atividade antimicrobiana da lectina de folhas de Mussaenda alicia (Rubiaceae). Pesquisa Científica E Tecnológica Em Microbiologia 2, 9-19. https://doi.org/10.22533/at.ed.3942022012
Oggero, M., y Forno, G. (2021). Glicoproteínas terapéuticas: diseño, expresión en células de mamífero y análisis de sus glicanos. https://hdl.handle.net/11185/6277
Oliveira, A. S., Lossio, C. F., Rangel, A. J., Martins, M. G. Q., Nascimento, F. E. P., Andrade, M. L. L., Cavada, B. S., Lacerda, S. R., y Nascimento, K. S. (2017). Detection, purification and characterization of a lectin from freshwater green algae Spirogyra spp. Anais Da Academia Brasileira de Ciências, 89(3), 2113–2117. https://doi.org/10.1590/0001-3765201720160150
Oliveira, C., Nicolau, A., Teixeira, J. A., y Domingues, L. (2011). Cytotoxic effects of native and recombinant Frutalin, a plant galactose-binding lectin, on Hela cervical cancer cells. Journal of Biomedicine and Biotechnology, 2011, 1–9. https://doi.org/10.1155/2011/568932
Regente, M., Taveira, G. B., Pinedo, M., Elizalde, M. M., Ticchi, A. J., Diz, M. S., Carvalho, A. O., de la Canal, L., y Gomes, V. M. (2014). A sunflower lectin with antifungal properties and putative medical mycology applications. Current Microbiology, 69(1), 88–95. https://doi.org/10.1007/s00284-014-0558-z
Reyes-Pool, H. P., (2008). Identificación y caracterización de la actividad biológica de lectinas aisladas de dos variedades de mango (Mangífera indica L) [Tesis de maestría, Universidad Veracruzana]. https://cdigital.uv.mx/bitstream/handle/123456789/46981/ReyesPoolHectorRaul.pdf?sequence=1
Rocha, A. A., Araújo, T. F., Fonseca, C. S., Mota, D. L., Medeiros, P. L., Paiva, P. M., Coelho, L. C., Correia, M. T., y Lima, V. L. (2013). Lectin from Crataeva tapia bark improves tissue damages and plasma hyperglycemia in alloxan-induced diabetic mice. Evidence-Based Complementary and Alternative Medicine, 2013, 1–9. https://doi.org/10.1155/2013/869305
Sano, K., y Ogawa, H. (2014). Hemagglutination (inhibition) assay. Methods in Molecular Biology, 1200, 47–52. https://doi.org/10.1007/978-1-4939-1292-6_4
Sarkar, S. K., Ali, S., Qurashi, D. H., Biswas, M. A. A., y Barman, D. N. (2019). Isolation, Partial Purification and Characterization of Lectin from Mahogany (Swietenia mahogany) Seed Kernel. Journal of Noakhali Science and Technology University, 3, 1.
Sarkar, S. K., Hossain, M. T., Uddin, M. B., y Absar, N. (2007). Purification, characterization and physico-chemical properties of three galactose-specific lectins from pumpkin (Cucurbita maxima) seed kernels. Journal of the Chinese Chemical Society, 54(6), 1433–1442. https://doi.org/10.1002/jccs.200700203
Sawant, S. S., Randive, V. R., y Kulkarni, S. R. (2017). Lectins from seeds of Abrus precatorius: evaluation of antidiabetic and antihyperlipidemic potential in diabetic rats. Asian Journal of Pharmaceutical Research, 7(2), 71. https://doi.org/10.5958/2231-5691.2017.00013.2
Scopes, R. K. (1988). Protein purification principles and practice (3ra ed.). Springer.
Torres, M., Brandão-Costa, R., Santos, J., Cavalcanti, I., Silva, M., y Nascimento, T. et al. (2019). DdeL, a novel thermostable lectin from Dypsis decaryi seeds: Biological properties. Process Biochemistry, 86, 169-176. https://doi.org/10.1016/j.procbio.2019.07.021
Tsaneva, M., y Van Damme, E. (2020). 130 years of Plant Lectin Research. Glycoconjugate Journal, 37(5), 533-551. https://doi.org/10.1007/s10719-020-09942-y
Van Damme, E. J., Barre, A., Bemer, V., Rougé, P., Van Leuven, F., y Peumans, W. J. (1995). A lectin and a lectin-related protein are the two most prominent proteins in the bark of yellow wood (Cladrastis lutea). Plant Molecular Biology, 29(3), 579–598. https://doi.org/10.1007/bf00020986
Varrot, A., Basheer, S. M., y Imberty, A. (2013). Fungal lectins: Structure, function and potential applications. Current Opinion in Structural Biology, 23(5), 678–685. https://doi.org/10.1016/j.sbi.2013.07.007
Vega, N., y Pérez, G. (2006). Isolation and characterisation of a Salvia bogotensis seed lectin specific for the TN antigen. Phytochemistry, 67(4), 347–355. https://doi.org/10.1016/j.phytochem.2005.11.028
Walski, T., Van Damme, E. J. M., y Smagghe, G. (2014). Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. Journal of Insect Physiology, 70, 94–101. https://doi.org/10.1016/j.jinsphys.2014.09.004
Watkins, W. M., Yates, A. D., y Greenwell, P. (1981). Blood group antigens and the enzymes involved in their synthesis: Past and present. Biochemical Society Transactions, 9(3), 186–191. https://doi.org/10.1042/bst0090186
Wingfield, P. (1998). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science. https://doi.org/10.1002/0471140864.psa03fs13
Yau, T., Dan, X., Ng, C., y Ng, T. (2015). Lectins with potential for anti-cancer therapy. Molecules, 20(3), 3791–3810. https://doi.org/10.3390/molecules20033791
- Resumen visto - 91 veces
- PDF descargado - 26 veces
- HTML descargado - 12 veces
- XML descargado - 0 veces
- EPUB descargado - 10 veces
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright
© Ciencia, Ambiente y Clima, 2024
Afiliaciones
Marqui Ramos Abreu
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Luis Orlando Maroto Martín
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Edian F. Franco
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana
Luis Enrique De Francisco
Instituto Tecnológico de Santo Domingo (INTEC), República Dominicana