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Contribución a los Modelos de Especies Competidoras 
con Retardo Distribuido

CONTRIBUTION TO COMPETING SPECIES MODELING  
WITH DISTRIBUTED DELAY

Resumen

En este artículo se analiza un modelo para especies compe-
tidoras tomando en cuenta el trabajo fundamental de 
Hsu, Hubbell y Waltman (1978), donde dos depredadores 
compiten por una presa común sin interferencia entre 
rivales. Aquí se introduce un retardo distribuido para cada 
una de las ecuaciones de los depredadores en la misma 
forma sugerida por Wolkowicz, Xia, y Ruan (1997), para 
que la conversión de la biomasa de la presa se le tome el 
tiempo de retardo que conlleva. Por medio del uso de la 
cadena del truco lineal, se analizan las soluciones en un 
sistema de ecuaciones diferenciales “equivalente”, con el 
propósito de determinar en cuáles condiciones sobrevive 
ninguna, una, o ambas poblaciones de especies depreda-
doras, bajo un apropiado punto de vista biológico.

Palabras claves: especies competidoras; ecuaciones dife-
renciales; retardo distribuido; órbita periódica; bifurcación 
de Hopf.

Abstract

In this paper a competing species model is analyzed 
taking into account the seminal paper of Hsu, Hubbell 
and Waltman (1978), where two predators compete for 
a common prey without interference between rivals. Here a 
distributed delay is introduced in each one of the equations 
of the predator populations in the same way as suggested 
by Wolkowicz, Xia & Ruan (1997), in order to model 
the conversion time lag of consumed prey biomass into 
predator biomass. Using the linear trick chain technique, the 
solutions are analyzed from an “equivalent system” of ordi-
nary differential equations looking to answer under what 
conditions will neither, one, or both species of predator 
populations survive, giving the appropriate insight of the 
biological point of view.

Keywords: Competing species, Differential Equations, 
Distributed Delay, Periodic orbit, Hopf Bifurcation.
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1. Introduction

Hsu, Hubbell and Waltman have analyzed the 
behavior of a predator-prey system consisting of 
two predators' species x1, x2 and a single prey specie, 
S (1978a, 1978b). The predator species compete 
purely exploitative, with no interference between 
rivals (no toxins are produced, for example). Both 
species have access to the prey and compete only 
by lowering the population of shared prey. For death 
rates it is assumed that the number dying is propor-
tional to the number currently alive. In the absence 
of predation, the prey grows logistically, and the 
predator’s functional response obeys the Michae-
lis-Menten kinetic, which is also called the Holling 
type curve. Thus, it is assumed that if there are no 
significant time lags in the system, the following 
model may describe the situation:

(1)

Here: xi(t) is the number of the i−th predator at time 
t; S(t) is the number of the prey at time t; mi is the 
maximum growth rate of the i−th predator; Di is the 
death rate for the i-th predator; ai is the half-satu-
ration constant for the i−th predator, which is the 
prey density at which the functional response of the 
predator is half maximal; γ and K are the intrinsic 
rate of increase and the carrying capacity for the prey 
population respectively. The model (1) has been 
extensively studied for several authors, nonetheless 
here a distributed delay is introduced and using the 
linear trick chain technique the analysis of the dyna-
mics of the equilibria and the main properties of the 
model are studied. The delay system is converted by 
mean of linear trick chain technique in an “equivalent 
system” of five ordinary differential equations. The 
final purpose is to look for conditions where neither, 
one, or both species of predators survive.

2. Formulation of the model

As it was mentioned early, a modification of the 
predator-prey model (1) will be performed. The main 
consideration is that there are lags in transforming 
the consumed prey biomass into new biomass of 
the predator populations. In order to model this 
process of conversion of prey consumed into preda-
tors, a distributed delay is introduced in the system 
to describe the involved time lag. More precisely, 
assume in a more realistic fashion that the present 
level of the predators affects instantaneously the 
growth of the prey, but the growth of the predator is 
influenced by the amount of prey in the past. Thus, 
suppose that the predator grows up depending on 
the weight average time of the function of Michae-
lis-Menten of the prey S over the past per predator. 
Thus, the model takes the form of the following 
integro-differential system:

In the literature, the kernel

K(u) = αexp (-αu),  (2)

is called the weak kernel and is frequently used in 
biological modeling and clearly implies that the 
influence of the past is fading away exponentially 
and the number 1/αi might be interpreted as the 
measure of the influence of the past respect to 
the predator population xi. So, to smaller αi, longer 
is the interval in the past in which the values of S are 
taken into account (Cushing, 1977; MacDonald, 
1978). This kernel has the property that 
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The behavior of the solutions of this system of ordi-
nary differential equations will be analyzed looking 
to answer under what conditions will neither, one, 
or both species of predators survive and give some 
insight from the biological point of view. The adequate 
space for the initial data of the problem and some 
related notations is as follow: 

Let BC+
3 denote the Banach space of the\ bounded 

and continuous function mapping from the interval 
(-∞, 0] to ℝ+

3, the 3-dimensional vectors with posi-
tive coordinates. From the general theory of integral 
differential equations (Burton, 2005;  Miller, 1971), 
for any initial data ϕ = (ϕ0, ϕ1, ϕ2) ∈ B+

3, there exists 
a unique solution π(ϕ; t): = (S(ϕ; t), x1(ϕ; t), x2(ϕ; 
t)) for all t > 0 and π(ϕ; 0) ∣(-∞, 0]= ϕ. Throughout, 
denote by (S(t), x1(t), x2(t)) the solution π(ϕ;t) with 
ϕ ∈ BC+

3, when no confusion arises. By a positive solu-
tion π(ϕ; t) or (S(t), x1(t), x2(t)) of the previous inte-
gro-differential system, means that the solution has 
initial condition ϕ ∈ B+

3 and each component of the 
solution is positive for all t > 0. However, the model 
given by the previous integro-differential system can 
be associated to a system ordinary differential equa-
tions in the following way:

Introducing two new unknown functions, yi, 
defined by:

 
(3)

i=1, 2 and using the form of the weak kernel (2) 
and the linear trick chain technique (MacDonald, 
1978) gives the new system of ordinary differen-
tial equations:

(4)

Thus, the integro-differential system is “equivalent” 
to this system of 5-dimensional ordinary differential 
equations. The relationship between both systems 
are interpreted as follows: If (S, x1, x2):[0, ∞)→ℝ+

3 is 
the solution of the integro-differential system corres-
ponding to the continuous and bounded initial 
functions (S̃, x ˜ 1, x ˜ 2):(-∞, 0]→ℝ+

3, then (S, x1, x2, y1, 
y2):[0, ∞)→ℝ+

5 is solution of (4) with the initial 
conditions S(0)= S̃(0), x1(0)= x ˜ 10, x2(0)= x ˜ 2 0, with:

Conversely, if (S, x1, x2, y1, y2) is any solution of 
(4), defined on the entire real line and bound ed on 
(−∞, 0], then yi, i = 1, 2, is given by (2), so (S, x1, x2) 
satisfies (3).

Most of the results of the paper are established 
considering the “equivalent system’’ (4).

3. Basic properties

In this section the basic properties of the model are 
established. In doing that, the following results are 
important for the proofs of some lemmas and theo-
rems in the following. The first one is a lemma due 
to Barbalat and the proof may be seen in Gopalsamy 
(1992).

Lemma 1 (Barbălat lemma). Let a be a finite number 
and f: [a, ∞)→ℝ be a differentiable function. If 
limt→∞ f(t) exists (finite) and the derivative func-
tion g is uniformly continuous on (a, ∞), then 
limt→∞ g(t) = 0.

The next definition and the theorem are due to 
Markus (1956) and will be needed for the proofs of 
some theorem in the next section.

Definition 1 Let A: xi’ = fi(x, t) and A∞: xi’ = fi(x) 
(i = 1, 2, ..., n) be a first order system of ordinary 
differential equations. The real-valued functions 
fi(x, t) and fi(x) are continuous in (x, t) for x ∈ G, 
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where G is an open set in ℝn, and for t > t0, and 
they satisfy a local Lipschitz condition in x. A is 
said to be asymptotic to A∞ (A→A∞) in G if for 
each compact set K ⊂ G and for each ε > 0, there is 
a T = T(K, ε) > t0 such that:

∣ fi(x, t) − fi(x) ∣ < ε for all i = 1, 2, ..., n, all x ∈ K, and all t > T.

In relation with the previous definition, the Markus 
theorem follows.

Theorem 2 (Markus) Let A→A∞ in G and let P be 
an asymptotically stable critical point of A∞. Then 
there is neighborhood N of P and a time T such that 
the omega limit set for each solution x(t) of A, which 
intersects N at a time later than T is equal to P. 

In the following results, the well definiteness of the 
system (4) is described. Note that the Barbălat Lemma 
implies that if (S(t), x1(t), x2(t), y1(t), y2(t)), satisfies 
the system (4); then, according with the remark of 
Wolkowicz et al. (1997, p. 1288), each component 
of this solution is uniformly continuous.

The following preliminary two lemmas are basic for 
the well biological meaning of the integro-differen-
tial model. The first one indicates that the model 
possesses the property that positive initial data yield 
positive solutions.

Lemma 3 (Positivity) For any ϕ ∈ BC +3 with ϕ0 > 0, 
ϕi > 0, i = 1, 2, the solution π(ϕ; t) remains positive 
for all t > 0.

Proof. Clearly,

and so S(t) > 0 for all t > 0 since S(0) > 0. To show 
that xi(ϕ;t) > 0 for all t > 0, suppose that it is not 
true. Let:

Then xi(t ‾)=0 and xi’(t ‾) ≤ 0. But from the integro-diffe-
rential system, the following calculation gives:

This is a contradiction. Therefore, xi(ϕ; t) > 0 for any 
positive t. This completes the proof.

Note that the previous lemma implies that the set:

E={(S,x1,x2,y1,y2) ∈ ℝ5 ∣ S > 0, x1 > 0, x2 > 0, y1 > 0, y2 > 0}

is invariant under the flow induced by the system 
(4). The following, second lemma, has to do with 
the property of pointwise dissipativity.

Lemma 4 (Pointwise Dissipativity) All positive 
solutions of model given by the integro-differential 
system are bounded for t > 0.  Moreover, system (4) 
is pointwise dissipative and the absorbing set B (into 
which every solution eventually enters and remains) 
is given by:

B = [0, K] × [0, L(D1)] × [0, L(D2)] × 
[0, K/p + 1] × [0, K/p + 1], (5)

where 

L(D)= K/pD + 1/D + 1 and p=min {1, α1, α2}.

Proof. Of the equation for S in (4) it is easy to see 
that using a similar argument, as in the proof of 
Lemma 3.1 in Hsu et al. (1978b), the boundedness 
of S(t) can be obtained. Precisely, for sufficiently 
small ε > 0 there exists T depending only on S(0), 
such that S(t)) < K + ε , for t > T.

Now let:
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then, for t > T,

where p = min{1, α1, α2}. And so,

W’< K − pW.

This clearly implies the uniform boundedness of y1 
and y2. Also note that taking into account the equa-
tions for xi in the equations (4), the boundedness of 
yi(t) implies the boundedness of xi(t). Taking into 
account the previous differential inequality and the 
equations for xi in the system (4), the number T1 = T1 
(ε, P0) is obtained for P0 = (S0, x10 , x20, y10 , y20 ), in 
such a way that:

where Mi = K/pDi + 1/Di + 1, for all t > T1. Thus, the 
pointwise dissipativity is obtained for the systems 
(4). This concludes the proof.

4. Properties of the equilibrium points

The following results shall give a complete descrip-
tion of the global asymptotic behavior of the system 
(4) under the generic condition μ1 ≠ μ2, where 
the parameter μi is the ratio of the i−th predator’s 
Michaelis-Menten (half-saturation) constant to its 
intrinsic rate of increase, times is death rate, i.e.,

 
(6)

In this case, the equilibria of the system (4) are 
given by:

where: 

 
(7)

The following result has to do with the inadequate 
predator, this result characterize the conditions 
under which the predators cannot survive on the 
prey, given the carrying capacity of the prey popula-
tion, even in the absence of competition.

Lemma 5 A necessary condition for either species xi 
survive is 0 < μi < K. 

Proof. If S(t) ≥ K, then S(t) < 0. Therefore, taking 
into account the absorbing set B given in (5), 
suppose that S(t) < K. Now let wi(t) = xi(t) + yi(t)/
αi, i = 1, 2. Then:

If mi ≤ Di, then the following representation is 
obtained: 

And if μi ≥ K, then the following representation 
is obtained:

In any case, the appropriate representation implies 
that the positive function w(t) is decreasing and the 
limit of w(t) as t goes to infinity there exists. If limt→∞  
w(t) = w* > 0, then by virtue of the uniform continuity 
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of the derivatives of w(t) and the Barbălat lemma, 
limt→∞ w’(t) = 0. Therefore, if  lim supt→∞ xi(t) = di 
> 0, then there exists a sequence {tn}, lim n→∞ tn = ∞, 
such that limn→∞ xi(tn) = di and, therefore, limt→∞ S(t) 
= μi. This contradicts the fact that S(t) < K < μi. Thus 
lim supt→∞ xi(t) = 0. That concludes the proof.

The previous lemma states that, if the maximum 
birth rate mi is less than or equal to the death rate 
Di, or if the parameter μi is greater or equal to the 
carrying capacity of the prey, then the i−th predator 
will die out. This establishes that there is a minimum 
population size which can support a given predator: 
K must be larger than μi for the i−th predator survive, 
independent of competition. Thus, the Lemma 5 
implies the following global result that describes the 
outcome in which both predator populations are 
eliminated because of an inadequate environment 
for either population to survive, rather than as a 
result of competition.

Theorem 6. If (a) m1 ≤ D1 or μ1 ≥ K, and (b) m2 ≤ D2 
or μ2 ≥ K, then limt→∞ S(t) = K and limt→∞ xi(t) = 0, 
i = 1, 2.

Proof. Clearly the hypothesis implies that limt→∞ xi(t) 
= 0, i = 1, 2, and this implies that limt→∞ yi(t) = 0, i = 
1, 2. With this, the remainder of the proof follows 
applying the Markus theorem in the same way as in 
the proof of Theorem 3.3(i) of Hsu et al. (1978b).

In the remainder of the paper is assumed that 0 < 
μ1< K.

Theorem 7. Let (a) 

μ1 < K < a1 + 2μ1, (8)

 
(9)

 
(10)

and (b) m2 ≤ D2 or μ2 ≥ K, then the equilibrium 
point E1 of the system (4) is globally asymptoti-
cally stable.

Proof. Clearly the hypothesis (b) implies that 
limt→∞ x2(t) = 0, and this implies that limt→∞ y2(t) 
= 0. In applying the Markus theorem let the system 
A be the system (4), and the system A∞ be given by:

  

(11)

Clearly A→A∞ in E. By other hand, the Jacobian 
matrix evaluated in the equilibrium point (μ1, f1(μ1), 
0, D1 f1(μ1), 0) of the system A∞ is given by:

and the characteristic polynomial of this matrix is 
given by newline:

p(λ) = p1 (λ)p2 (λ),

Where:
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The hypothesis (9) of the theorem implies that the 
two roots of the polynomial p1 have negative real 
part, and the hypothesis (8) implies that A < 0 and 
B > 0. Thus the Routh-Hurwitz criterion implies 
that all of the root of the polynomial p2 have nega-
tive real part. Because if were,

(α1 + D1− A)(−A)(α1 + D1) ≤ D1 B,

then:

Taking into account (8), this inequality implies that:

after some manipulations and taking into account 
(10) result that K > 2μ1 + a1, what is contradictory 
with (8). Thus, the equilibrium point (μ1, f1(μ1), 
0, D1f1(μ1), 0) of the system A∞ is asymptotically 
stable and by virtue of Markus lemma the conclu-
sion of the theorem is obtained.

The following theorem guarantees the persistence 
of the species S, x1, x2 under the necessary condi-
tion given in the previous lemma. Here the theory 
of uniform persistence used here is as appear in 
Thieme (1993).

Theorem 8. If 0 < μi < K, i ∈ {1, 2}, then the all the 
populations S, x1, x2 are persistent.

5. The one predator-one prey system

In order to have a comprehensive insight of the 
model, in this section the analysis of the one preda-
tor-one prey system is presented. In this case, the 
system (4) reduces to the three-dimensional system 
of ordinary differential given by:

 

(12)

Denote by 𝒜 the open region 𝒜 = {(S, x, y) ∈ ℝ3:S 
> 0, x > 0, y > 0} and define by μ, the lumping para-
meter given by μ = aD/m−D. It is easy to see that 
the only equilibrium points of system (12) in the 
boundary of 𝒜 are P0 = (0, 0, 0), which is unstable, 
and PK = (K, 0, 0), which is globally asymptotically 
for μ > K. There are not equilibrium points with 
positive coordinates for the previous mentioned 
values of the parameters. When μ = K, the equili-
brium PK loses his stability (see Table 1) and a sadd-
le-node bifurcation arises and for μ < K appears the 
only equilibrium, P* in the positive orthant, which 
is given by:

P*=(μ, f(μ), Df(μ)), where f(S) = 1/m (1 − S/K)(a + S).

Letting u = (S, x, y)T, v = (S, x, z)T, and H=diag 
[1, 1, −1]. The transformation v = Hu takes the 
system (12) into a competitive and irreducible 
system in the sense as appears in Smith (2008). 
Note that system (12) may be written as:

S’ = h(S)(f(S) − x)
y’ = α(h(S)x − y),

Table 1. Equilibrium points in the border of 𝒜

Equilibrium Parameters values Stability

P0 = (0,0,0) α > 0, K > 0 Unstable

PK = (K,0,0) α > 0, 0 < K < μ Asymptotically 
Stable

PK = (K,0,0) α > 0, K > ≥ μ Unstable
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where h(S) = mS/a+S. With these notations, the 
Jacobian matrix of system (13) evaluated at the equi-
librium point P* takes the form:

and the characteristic polynomial of the matrix A is 
given by:

p(λ) = λ3 + b2λ2 + b1 λ + b0

where, 

To see the sign of the real part of the roots of the 
polynomial p(λ), the Routh-Hurwitz criterion will 
be used. Clearly, if K > a + 2μ, then the equilibrium  
point P* is unstable since the coefficient b1 is nega-
tive. Therefore, the stability of the equilibrium point 
P* requires filling the condition:

μ < K < a  + 2μ (14)

The Routh-Hurwitz criterion implies that negative 
the real part of the roots of p(λ) occurs if and only 
if the following inequality hold:

(α + D− G)(α + D) G > αL, (15)

where G = (D/mK) (a + 2μ − K) and L = aD2/mKμ 
(K − μ). From this inequality the following poly-
nomial is obtained:

q(α,K) = G(α+D)2 + (G2 − L)(α + D) + DL.

Where the parameter K is emphasized as an argu-
ment of the polynomial q in order to explain better 
his sign as α varies respect to K. The inequality (15) 
holds, if and only if, q(α, K) > 0. The sign of the 
polynomial q(α, K) depends on the coefficient of 
the term α + D. By other hand, the function q has 
a minimum respect to α at α* + D = − 1/2 r(K)/G, 
given by:

 (16)

When this minimum is positive, then clearly 
q(α, K) > 0 and the equilibrium point is stable for 
all K > μ. Now, putting:

r(K)=G2 − L, (17)

and note that r(μ) is positive, and r(a + 2μ) is nega-
tive, which implies that there exists a unique value 
of K between μ and a + 2μ, say K*, such that r(K*) 
= 0. Thus, for K in the interval (μ, K*], r(K) ≥ 0,  
and therefore the coefficient (17) of the term α + D 
of the polynomial q(α, K) is positive, which implies 
that q(α, K) > 0, for all positive α, and in this case 
the equilibrium point P* is (locally) asymptotically 
stable. When K ∈ (K*, a + 2μ),  the sign of r(K) 
reversed and in this case the coefficient of the term 
α+D of the polynomial q(α, K) (17) is negative. In 
this case, q(α, K) has two zeros α1+ D, α2 + D, such 
that q(α, K) ≤ 0 for α ∈ (α1 + D, α2 + D) and the 
equilibrium point P* is unstable. Note that all of this 
situation occurs when the minimum of q(α, K) is 
negative, and clearly:

 (18)

All of the previous calculations are summarized in the 
following theorem. The proof of the Hopf bifurca-
tion isnvolve several calculations and the procedure is 
similar to the used in in Cavani & Farkas (1994).
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Theorem 9. A necessary condition for the existence 
of the equilibrium of positive coordinates P* of the 
system (12) is μ < K. Moreover: (i) If μ < K < a + 2μ, 
then there exists a unique number K* between μ and 
a + 2μ such that if K belongs to the interval (μ, K*), 
the equilibrium P* is (locally) asymptotically stable 
for all positive α. When K = K*, the equilibrium P* 
is a center (stable). For K > K* the equilibrium point 
P*, lost its stability and for K in the interval (K* , a 
+ 2μ) there are two values of α, α1 and α2 such that 
for α ∈ (α1 + D, α2 + D), q(α, K) in (16) is negative 
and therefore the equilibrium P* is unstable. If K = 
K* and α = α1 + D, a transcritical Hopf bifurcation 
takes place. Finally, for K ≥ a + 2μ the coefficient b1 
of the characteristic polynomial p(λ) of the matrix 

A is negative and therefore the equilibrium point P* 
is unstable.

Note from (17) that for K < K* very near to the 
value K* the term r(K) is positive and the equili-
brium point P* goes from to be stable to unstable 
as K passes through K* and α through α1 + D . This 
can be interpreted as the system (13) exhibits the 
paradox of the enrichment; however, the delay may 
act as a mechanism to regain the stability. In fact, 
when 1/α increases and passes through 1/α1+D, 
the equilibrium point P* is again stable. The Table 
2 that follows may be useful in order to get in mind 
the stability of the equilibrium P* .

Table 2. Change of sign and positive roots for A0 < 0

Stability of the equilibrium P*

Case α K r (K) q (α, K) P*

1 -- K ≤ μ -- -- does not exist

2 α > 0 μ < K < K* positive positive loc. asymp. stable

3 α > 0 K=K* zero positive stable (center)

4 α = α1 + D K* < K < α +2μ negative zero unstable

5 α ∈ (α1 + D, α2 + D K* < K < α + 2μ negative positive unstable

6 α = α2 + D K*  < K< + 2μ negative zero unstable

7 α > 0 K = K α +2μ b1 = 0 b1 = 0 unstable

8 α > 0 K > K α +2μ b1 < 0 b1 < 0 unstable
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Example. For the following values of the parame-
ters: m = 2, a = 0.5, D = 1, give μ = 0.5, a + 2μ = 
13.5, K* = 1.18. and picking K = 1.17, then for α 
= 0.9 the equilibrium point P* is (locally) asympto-
tically stable. For K = 2 and α = 0.9 there is a stable 
periodic orbit.

Figure 1. Solution evolving to the equilibrium 
with K=1.17

Figure 2. Locally asymptotically stable equilibrium 
P* with K=1.17

Figure 3. Solution evolving to a periodic one with 
K=2

Figure 4. Stable periodic orbit with K=2
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6. Conclusions

This paper is an analysis of the behavior of a model of 
two predators competing exploitatively for a shared 
prey species. The prey grows logistically in absence of 
predation and the predators consume prey according 
to a saturating functional response, but the growth 
of the predator is influenced by the amount of prey 
in the past. It is supposed that the predator grows up 
depending on the weight average time of the function 
of Michaelis-Menten of S over the past per predator. 
The system is equivalent to a dissipative system of five 
ordinary differential equation, by using the so-called 
trick of the linear chain. The analysis of this equiva-
lent system establishes that the species survive if and 
only if K > μi, where K is the carrying capacity of the 
prey specie and μi is the ratio of the i−th predator 
according with the Michaelis-Menten response. The 
case when there exists only one predator is analyzed 
with detail. In this case the equilibrium point of 
positive coordinates is unstable for all K > a + 2μ. 
Theorem 9 characterizes the general situation and 
the occurrence of the Hopf bifurcation. The table 2 
describes all of the situations analyzed and the figures 
1, 2, 3 and 4 give examples of the dynamic.
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